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FOREWORD 

The annual conference on Ground Target Modeling and Validation is jointly sponsored by 
the U.S. Tank-Automotive Research, Development & Engineering Center (TARDEC). 
It is administered through Signature Research, Inc. (SGR).   The conference is held on the 
campus of Michigan Technological University in Houghton, Michigan.   The Tenth Annual 
Conference on Ground Target Modeling and Validation was held 17-19 August, 1999. 

The conference is held at the UNCLASSIFIED level and is open to all interested persons. In 
general, the attendance is made up of technical-level individuals representing industry, defense 
contractors, and government employees. The focus of the conference is on modeling and 
simulation of ground target signatures and backgrounds, and the validation of such models. 
Multi-mode technologies include the infrared or near-infrared, radar/millimeter wave, acoustic, 
seismic, photometric/visible, ultraviolet, and magnetic sensing. 

The 1999 proceedings will be provided to all attendees as part of the symposium registration. 
Contact Signature Research, Inc. at (906) 337-3360, or sigres@up.net for additional copies of 
these proceedings. 
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Army Space to Ground 
Reconnaissance, Surveillance, and Target Acquisition (RSTA) 

Operational Analysis 

Raymond L. Livingston, Jr. 
Teledyne Brown Engineering 

Huntsville, AL 35807 

ABSTRACT INTRODUCTION 

The Department of Defense (DoD) has long been 
dependent on various military support functions enabled 
by space assets. However, the next generation satellite 
capabilities may profoundly influence Army operations. 
Soon-to-be-launched space-based Reconnaissance, 
Surveillance, and Target Acquisition (RSTA) assets may 
cause radical thinking about how to take maximum 
advantage of these new capabilities. In particular, RSTA 
sensor functions in the form of hyper-spectral imagery 
(HSI) and synthetic aperture radar /ground moving target 
indicator (SAR/GMTI), will be tested and evaluated on 
Warfighter 1 and Discoverer II, respectively, in the next 
few years. In preparation for the evaluation of these new 
space assets, the Army is embarking on a series of 
initiatives to determine the military utility of such assets 
and how best the Army can employ the data and 
information produced. The Army is concentrating on the 
tasking, processing, exploitation, and dissemination 
(TPED) issues. In fact, the TPED issues are the most 
critical to the Army since it will not own or directly 
control either satellite system. Central to this front end 
work are data and analyses to support development of 
concepts of operations (CONOPS). Issues such as 
quantity and quality of data, timeliness of dissemination, 
and echelon of support are just a few examples requiring 
analysis and experimentation. In order to address a wide 
array of military utility and TPED issues the US Army 
Space and Missile Defense Command (SMDC) has a 
number of initiatives spanning the functions of modeling 
and simulation, studies and analysis, and experimentation. 
This paper discusses some of those initiatives and the 
approaches taken in addressing the military utility and 
TPED issues. It closes with some of the approaches in 
developing the necessary models and simulations to 
support space based RSTA studies and analysis and 
experimentation for years to come. 

There are several initiatives within the DoD community 
which will provide next-generation space-based RSTA 
capabilities. In each case, the Army is not the principal 
driver, but, as a user of space-based RSTA data, it does 
have requirements that should be determined and then 
publicized. In order to assist in requirements generation 
and rationale, appropriate M&S tools must be developed 
and used. The Army must expand the horizon beyond the 
current state of modeling and simulation tools. While 
much analysis will be done by other Services, the 
National agencies, contractors, etc., the Army must 
conduct its own analysis based on its own needs and to 
verify its own requirements. This paper addresses some 
of these issues from a top-level perspective. It also 
addresses some of the issues associated with the 
initiatives to operationalize space. 

SCOPE 

This paper has several constraining conditions. First, it 
considers only issues associated with space-based or high 
altitude endurance unmanned aerial vehicle (HAE-UAV) 
systems. For the remainder of this paper the term space- 
based system will refer to both system categories. 
Second, the paper focuses on the advanced concepts and 
requirements (ACR) modeling and simulation domain, 
and not on the other two domains of training, exercises 
and military operations (TEMO), and research, 
development and acquisition (RDA). (It is clearly 
recognized that the majority of the M&S papers being 
presented at this conference lie within the RDA domain 
and fall within the taxonomy of systems engineering and 
analysis.) And, within the ACR domain, the focus is on 
constructive simulation requirements with emphasis on 
operational analysis. The paper also addresses issues of 
relating space-based RSTA data to ground commander 
operations. Metrics addressing the value of information 
are discussed. It addresses the need for metrics to address 



RSTA issues such as ways to measure the value of space- 
based RSTA information to the ground commander. And 
last, the paper confines itself to RSTA operations and 
does not concern itself with other space-based functions. 

NEAR TERM SPACE-BASED RSTA INITIATIVES 

The following systems discussions describe a few of the 
new space-based (or HAE UAV) RSTA platforms 
undergoing tests or anticipating launch in the next few 
years. During times of conflict each of these systems is 
considered a theater asset. 

Space-based Radar 
The DISCOVERER II (D2) program, formerly known as 
STARLITE, is a space-based synthetic aperture 
radar/ground moving target indicator (SAR/GMTI) 
demonstration initiative. Of particular interest to this 
audience is the projected capabilities of the imaging SAR 
system. The D2 SAR is intended to have three levels of 
resolution: 0.3, 1 and 3 meters with the high resolution 
mode being a spotlight "staring" capability. D2 was 
originally undertaken by the Defense Advanced Research 
Projects Agency (DARPA), the United States Air Force 
(USAF), and the National Reconnaissance Office (NRO). 
Its principal objectives are to evolve national asset space 
reconnaissance technology enabling deployment of a 
satellite constellation that addresses theater ground 
reconnaissance and surveillance needs in near real time. 
The space-based radar (SBR) objective system, and in 
turn the D2 Demonstration, is a satellite system whose 
primary purpose is to provide Space Based support to a 
CINC, Joint Force Commander (JFC), or Service 
Component Commander during crisis or hostilities. It will 
augment the in-theater assets and contribute to the overall 
situational awareness view in a common operations 
picture. See Figure 1. 

Store & Forward 
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Direct 
Transmit and Receive 

Figure 1. DISCOVERER II 

DISCOVERER U is a demonstrator expected to prove a 
cost-constrained SBR 'objective' system can exist and do 
the job. The demonstration will baseline direct tasking 
and product delivery in theater, to maximize 
responsiveness and to minimize delays. The SBR satellite 
system will uniquely provide timely, space-based 
information to users from tactical users to strategic users. 
The system will use improvements in Tasking, 
Processing, Exploitation and Dissemination (TPED) 
processes while integrating with developing Common 
Data Links (CDL) and Distributed Common Ground 
Stations (DCGS) for optimizing system's operational use. 
By 2004, D2's two satellites will demonstrate improved 
operational capabilities and will provide a path to a 
financially frugal objective program. 
The Army is the current operational customer for D2 
through its integration with the TENCAP Tactical 
Exploitation System (TES) and/or Combined Ground 
Station (CGS) Module. 
The Joint Concept Development Group (JCDG) ensures 
Navy, Army, and Air Force operational needs are in the 
D2 CONOPS. The D2 Demonstration will highlight SBR 
required, and desired, capabilities for future Operational 
Concept Development. 
SMDC is the lead US Army proponent for the 
DISCOVERER II program. Its mission is to map the 
Army SAR/GMTI requirements into the design of the 
DISCOVERER II. The SMDBL is the lead agent for 
performing the studies, analysis and experimentation 
incident to resolving the DTLOMS issues. 

DISCOVERER U Analysis Issues. 
Following are issues related to DISCOVERER II for 
which operational analyses are appropriate: 

Satellite Direct Tasking and Direct Downlink. The 
impact of this issue relates to timelines and the 
availability of data and information. This direct 
downlink capability could lend itself to receipt and 
display by tactical maneuver units in near real time. 
Satellite Pass Allocation Strategy. For a joint task 
force there may be two or more services with 
multiple echelons vying for D2 data. And, the 
strategy may change by combat operational phase 
(i.e., indications & warning, pre-deployment, 
deployment, operations, redeployment, and 
peacekeeping). Obviously, there must be some 
prioritization and deconfliction scheme to address 
this operational issue. This also has a direct impact 
on the type and timeliness of data. 
Processing, Exploitation, and Dissemination (PED). 
This issue addresses timeliness, but also the idea of 
data adequacy and needs by organizational echelon. 
Quantity, Quality, and Timeliness (QQT). As an 
overarching term QQT captures the essence of much 
of what is needed for D2 operational analyses and it 
is a major operational driver. 



Warfighter 1 
Warfighter  1  is a Joint commercial and DoD effort 
involving the use of a hyperspectral imaging (HSI) sensor 
in space. HSI provides very fine spectral resolution of the 
composition of material based, in part, by its reflective 
properties. The USAF is lead for DoD for the 2000 launch 
with a one-year demonstration and evaluation. 
For this HSI satellite evaluation the Army needs a 
military utility analysis addressing several issues ranging 
from the effectiveness and utility of the sensor data to 
operational issues associated with tasking and downlink 
of data. In the case of the sensor effectiveness the Army 
must   work   the   data   processing,   exploitation,   and 
dissemination issues.    The operational issues will be 
similar to those for Discoverer U. 
The unique capabilities of an HSI sensor need evaluation. 
Evaluate across the various combat operational phases: 
indications   &   warning,   pre-deployment,   deployment, 
operations, redeployment, and peacekeeping. 
An early goal of the Army's involvement with Warfighter 
I is that of developing a space simulation capability with 
multi-functionality. 

Warfighter I Analysis Issues 
Following are issues related to Warfighter I for which 
operational analyses are appropriate: 

Satellite Direct Tasking and Direct Downlink.   The 
impact of this issue relates to timelines and the 
availability of data and information. 
Satellite Constellation Size & Configuration. 
Satellite Revisit and Coverage Times. 
Processing, Exploitation, and Dissemination (PED). 
This issue addresses timeliness, but also the idea of 
data adequacy and needs by echelon. 
Quantity, Quality, and Timeliness (QQT).    As an 
overarching term QQT captures the essence of much 
of what  is  needed  for Warfighter I  operational 
analyses and it is a major operational driver. 

Global Hawk 
Global Hawk is the aircraft element of the DoD Tier U 

Plus reconnaissance system. Global Hawk (See Figure 2) 

Figure 2. Global Hawk 

is a USAF-managed reconnaissance system. It is an 
attempt to replace expensive manned reconnaissance 
aircraft such as the U2 and the SR 71, with autonomous, 
long-endurance unmanned aircraft. Global Hawk has a 
range capability of 14,000 nautical miles and an 
endurance of 42 hours. It flies at an altitude of up to 
65,000 feet. The aircraft is equipped with optical and 
infrared cameras and with synthetic aperture radar for 
continuous surveillance of an area as large as the state of 
Illinois. The SAR resolution capabilities are expected to 
be a 1 foot, spotlight mode, and 1 meter in scan mode. It 
will provide battlespace commanders near-real-time 
intelligence imagery from high altitudes for long periods 
of time using SAR, moving target indicator, EO, and 
infrared sensor systems. A wide-band UHF satellite data 
link allows direct transmission of imagery data to users in 
real-time. A Mission Control Element ground station 
controls mission operations and processes and distributes 
reconnaissance imagery. Global Hawk prototypes have 
been built and are currently undergoing flight testing. 

Global Hawk Analysis Issues 
Following are issues related to Global Hawk for which 
operational analyses are appropriate: 

System Direct Tasking and Direct Downlink.   The 
impact of this issue relates to timelines and the 
availability of data and information. 
System Revisit and Coverage Times. 
Processing, Exploitation, and Dissemination (PED). 
This issue addresses timeliness, but also the idea of 
data adequacy and needs by echelon. 
Quantity, Quality, and Timeliness (QQT).    As an 
overarching term QQT captures the essence of much 
of what is needed for Global Hawk operational 
analyses and it is a major operational driver. 

OPERATIONAL ANALYSIS 

What is meant by the term operational analysis (OA) as 
opposed to what might be termed systems analysis, 
component level analysis, engineering analysis, etc? 
Unlike some of the work conducted in those latter 
categories, the OA has a different focus - an operational 
focus. Other terms for the OA could be a cost and 
operational effectiveness analysis (COEA), analysis of 
alternatives (AoA), or military utility analysis. The 
typical OA has these characteristics: 

Force level focus 
Opposing, force-on-force combat 
Combined arms, and perhaps joint, focus 
System functional interrelationships 
Time period from short battle to 
multi-day campaign 



The operational analysis will more completely represent 
combined arms forces in an operational environment. 
The OA uses such documents as ORDs, CONOPS, 
OMS/MP, etc., to frame its analysis. So, this paper 
reflects analysis and analytical needs based on those 
characteristics and conditions. 

ARMY ANALYTICAL ISSUES 

For these new space-based RSTA assets there are several 
issues of critical importance to the Army. Some of the 
more important issues are highlighted below. 

In-theater direct uplink and downlink 
In-theater dynamic tasking and retasking 
Scheduling of theater assets 
Assured access/availability 
Tactical    Exploitation    of   National    Capabilities 
(TENCAP)     vs Army Battle  Command System 
(ABCS) trades 
Near continuous surveillance 
Imagery analysis/interpretation 
Automatic/Aided Target Classification and 
Recognition 
Availability of data. 
Quality, quantity and timeliness of data 
What data is needed? Where? Classification? 
What type data is to be disseminated to which 
echelon? 
Fusion and correlation of imagery from different 
sources. 

These are operational issues directly impacting the theater 
commander and his forces. 

Tasking, processing, exploitation, and dissemination 
(TPED) capabilities and timelines 

There are also other characteristics of space-based RSTA 
assets for which other metrics could be described in 
support of operational analyses. These include the 
following: 

On-demand reconnaissance 
Near continuous surveillance 
Broad area coverage 
Capability for narrow-area coverage 
Denied area coverage 
Sensor mode characteritics and flexibility 
All weather capability 
Day/night capability 

Following are examples of the types of RSTA information 
these space-based systems provide: 

Situational awareness (a common operational picture) 
for Blue and Red forces, for pre- and post-hostilities, 
as well as during combat operations. 
(Precision) Targeting and aided target recognition 
Rapid acquisition and tracking  of mobile,  time- 
critical targets. 
Indications and Warning 
Battlefield ordnance awareness (BOA) 
Counter    enemy    camouflage    concealment    and 
deception (CC&D) 
Battle damage assessment (BDA) 
Intelligence preparation of the battlefield (IPB) 
Support to operations other than war 

METRICS 

For this discussion two categories of metrics will be 
established: force effectiveness metrics, and space-based 
RSTA metrics. The former category is typical of the 
tactical metrics with which many should be familiar. 
These include the typical, force-on-force combat endgame 
metrics such as sensor acquisition ranges, Blue and Red 
losses, loss exchange ratio (LER), fractional exchange 
ratio (FER), mission accomplishment, etc. 
Now, for space-based RSTA systems, there are several 
appropriate metrics. These include the following: 

Sensor coverage (instantaneous or over time) 
Revisit frequency 
Redundancy (other space and terrestrial systems) 
Flexibility for mission tasks, types of coverage, etc. 
Quality of data and information 
Quantity of data and information 
Timeliness of data and information 

OPERATIONAL ANALYSIS CATEGORIES 

As a mechanism for discussing these space to ground 
RSTA operational analysis issues, three categories can be 
used. These are space operational analysis, ground 
operational analysis, and space to ground operational 
analysis. Analysis of appropriate issues can be conducted 
within each separate area, or an integrated approach can 
be used as in the case of the last category. In fact, it is 
this last category that is the focus of this paper. Part of 
the community's current shortcomings in this area is that 
there is the lack of this integrated, end-to-end, space to 
ground operational analysis environment. The following 
sections discuss the two separate pieces and then evaluate 
the need for the integrated environment. 

Space Operational Analysis 
There are several parameters which are important in 
determining    conditions    and    capabilities    impacting 
supported unit operations.    Some of these are detailed 
below: 



Constellation types and configurations. Explicit 
modeling is necessary to determine coverages, revisit 
rates, effectiveness of various numbers of systems, 
types of orbits, etc. 

Constellation and orbital mechanics modeling. 
Modeling here includes such factors as Kepler's 
equations of motion, altitudes, semi-major axis and 
eccentricity, numbers of rings and numbers of 
satellites per ring, types of orbits, inclination angle, 
and phase angle between rings. 

Sensor parameters. It is important to model the 
characteristics of various sensor types, combinations 
of sensors, and space-based sensor effectiveness 
through realistic environmental conditions over long 
ranges. Included are the familiar technologies such 
as EO, IR, RF, etc. Coupled with those are the next 
generation remote sensing capabilities using 
multispectral and hyperspectral technologies. Target 
and background spectral radiance characteristics are 
especially important. The ability to model realistic 
conditions through the atmosphere, ground 
background clutter, target signatures, shadowing, 
etc., are all required. The impacts of solar insulation 
and materiel reflectivity, and the impacts of 
atmospheric absorption and transmissivity are also 
necessary as modeling and analysis resolution dictate. 

Ground Operational Analysis 
For this category one has the typical ground analysis 
issues, but with inputs collected in part from space. These 
include the following: 

Army Battle Command System (ABCS) modeling. 
The existing communications architecture and 
systems must be considered with regard to 
transmitting data or information from point to point. 

Ground architecture requirements. The entire 
ground-supporting environment must be understood 
with respect to numbers of C*I systems, locations, 
performance capabilities, linkages, etc. For space 
systems support these include the typical tasking, 
processing, exploitation, and dissemination (TPED) 
systems, as well as the aforementioned ABCS 
systems. The area involving TPED opens up myriad 
operational issues involving who, where, how, when, 
how often, how long, how detailed, etc. 

The area of camouflage, concealment and deception 
(CC&D) has the typical implications, except now 
from a remote sensing perspective. There are active 
and passive systems and techniques from force and 
systems aspects that have operational impacts. 

The Doctrine, Trainings Leader development, 
Organizations, Materiel, and Soldiers (DTLOMS) 
reflect issues relevant throughout any analysis and 
are assumed to be readily understood in the context 
ofOAs. 

Space to Ground Operational Analysis 
The merging of the space and ground segments produces 
an integrated environment for conducting space to ground 
operational analysis. The analysis issues as discussed in 
the two previous categories also apply here. Additionally, 
there are other considerations. 

In order to address adequately the combined space 
and ground elements and functions, an integrated 
modeling capability is required. This could be a 
single standalone simulation, or it could be a 
federation of one or more tools based on analysis 
requirements. 

An integrated capability provides the analytical 
environment for conducting military utility analyses 
and evaluating concepts of operations (CONOPS), 
tactics, techniques and procedures (TTPs), and in 
general detennining operational requirements. 

DATA 

The issue of data raises the typical problems practitioners 
of this operational analysis face. One relishes the results 
of tests as sources of data, but there are few tests and 
experiments in this arena to date. And, some of the test 
data that have been collected are clamped under a 
classification blanket. Early on, such as when conducting 
a military utility analysis, the use of parametric bounding 
of estimated data profiles often proves very useful and 
even adequate. This idea of using parametric data may 
not be very appealing to some, but that approach is still 
required in many operational analyses, so this aspect 
deserves attention. 

CURRENT INITIATIVES 

In the area of modeling of space-based RSTA systems 
and associated operational analyses, there have been 
several recent initiatives. Some of these are still ongoing, 
and many point up the need for modeling and simulation 
(M&S) improvements in the areas covered in this paper. 
Most of these are Army initiatives, but some reflect work 
by the broader DoD community. 

Space and Missile Defense Modeling and Simulation 
Investment Strategy.   This is a Space and Missile 



Defense Command (SMDC) initiative led by the 
Space and Missile Defense Battle Lab (SMDBL). It 
will result in a multi-year strategy for M&S 
investments for space and missile defense. This 
strategy is scheduled for completion by 3Q FY 00. 

Space Mission Area Analysis: a top level SMDBL 
look at future requirements for space-based systems. 

The Battle Command Reengineering Space Initiative 
is an ongoing, collaborative SMDBL experimentation 
effort with the Mounted Maneuver Battle Lab 
evaluating the benefits of putting space products into 
battalion and brigade TOCs. 

Space Mix Study. This SMDC effort will define the 
full range of space capabilities required in the 
outyears. The output will be a future space systems 
architecture. 

some there are work-arounds, but those are beyond this 
paper's scope. 

Ability to link space-based RSTA assets and impacts 
on the ground commander 
"Generic" capability for any space-based RSTA asset 
Some level of resolution to address TPED issues 
What level of functionality to input to the Joint 
Warfare System (JWARS), the new Joint model for 
the ACR domain. 
Ground systems signatures consistent with space- 
based RSTA systems capabilities. 
Large play boxes 
Large numbers of modeled entities 
Processing algorithms 
Relief or work-arounds to classification restrictions 
for certain systems 
Integration of space and ground tools 
Usable data bases 

Military utility analysis initiatives. Several such 
analyses have been completed or are contemplated. 
These include the Hyperspectral Imagery (HSI) 
Utility Analysis, and the planned DISCOVERER II 
User Utility Analysis. 

Spectral Imagery IPT. This is a SMDC effort 
involving a wide range of spectral imagery 
initiatives. These include identification and/or 
development of appropriate modeling and simulation 
tools, participation in Army and inter-service 
experiments and exercises, and, in short, assisting in 
determining the Army's requirements for space-based 
spectral imaging. 

- TENCAP MUSE. This effort involves the use of the 
Multiple Unified Simulation Environment (MUSE) to 
model various HAE-UAV and space-based RSTA 
systems. MUSE is a virtual simulation that supports 
analyses, experiments and exercises. This initiative's 
objective is to demonstrate the military utility of 
Army TENCAP assets in theater and JTF operations. 

These are just a few of the Space-based RSTA related 
initiatives ongoing within the Army and the DoD arena. 

MODELING AND SIMULATION ISSUES 

From the broad perspective of modeling and simulation 
there are also issues impacting this subject of space to 
ground RSTA operational analysis. Some of these are the 
typical M&S issues as one faces as the state of the art 
evolves, but each impacts the ability to conduct OAs. For 

SUMMARY 

This paper has presented a top-level look at issues 
associated with space to ground RSTA operational 
analysis. The paper covered emerging space-based RSTA 
assets, the need for operational analysis, space-based 
RSTA characteristics and analysis metrics, current 
initiatives in this area, and related modeling and 
simulation issues. 
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ABSTRACT 

In a sequence of battles, attrition will eventually deplete the 
Blue force to such an extent that without repairability of 
damaged platforms (or replenishment) the fighting 
effectiveness of the Blue force will be compromised. 
Increased Blue platform survivability will slow, but not halt, 
the attrition process. Repairability, on the other hand, may 
maintain the Blue force level at some fraction, depending on 
both the survivability and repairability rates, of the initial 
Blue force. 

The departure point for this paper, inspired in part by Parks, 
[1, Parks], is the following simple question: How many 
vehicles should Blue equip itself with, if Blue forces and 
Red forces are fighting a sequence of battles for which (1) 
Blue's survivability rate in each of the battles is .95, (2) 
during each battle Blue is able to repair and return to the 
following battle 20% of its damaged vehicles, and (3) Blue 
needs 40 functional vehicles in order to fight effectively. 

This question is answered first with a simple spreadsheet 
model. The concept of a particular type of Markov process, 
that of a Markov chain, is then introduced, and it will be 
shown that the above question is more easily modeled, 
thought about, and solved, by modeling it as a Markov 
chain. 

The above simple question gives rise to the sequence of 
questions: What is the relationship between survivability 
and repairability if x% of the initial Blue force must remain 
functional throughout an indefinite sequence of battles. A 
Markov chain model will be used to provide an answer to 
this question. 

Realistically, however, the comparison of repairability and 
survivability requires that the model used account for the 
possibility that in each battle some fraction of Blue's force 
will be damaged beyond repairability. A Markov model to 
account for this  contingency will be developed and 

explained. 

INTRODUCTION 

As mentioned in the abstract, the first goal of the paper is to 
build a simple spreadsheet model to answer the question: 
How many vehicles should Blue equip itself with, if Blue 
forces and Red forces are fighting a sequence of battles for 
which (1) Blue's survivability rate in each of the battles is 
.95, (2) during each battle Blue is able to repair and return 
to the following battle 20% of its damaged vehicles, and (3) 
Blue needs 40 functional vehicles in order to fight 
effectively. 

Next, the concept of a particular type of Markov process, 
that of a Markov chain or homogeneous Markov process, is 
introduced and used to model and answer the above 
question. The Markov model will then be used to 
investigate the relationship between the three parameters: 
(1) Blue force survivability, (2) Blue force repairability, 

and (3) the fractional value of the Blue force that needs to 
be always ready for combat. 

Lastly, the above model comparing survivability and 
repairability is made more realistic by allowing combat 
vehicles to be damaged beyond repairability during one of 
the sequence of battles. The implications of this more 
complex model are then presented. 

THE SPREADSHEET MODEL 

The question to be answered is: How many vehicles should 
Blue equip itself with, if Blue forces and Red forces are 
fighting a sequence of battles for which (1) Blue's 
survivability rate in each of the battles is .95, (2) during 
each battle Blue is able to repair and return to the following 
battle 20% of its damaged vehicles, and (3) Blue needs 40 
functional vehicles in order to fight effectively. 

The initial method for answering the above question is a 



spreadsheet model. In the table or spreadsheet given below, 
the numbers represent a percentage of Blue vehicles, and 

each row depicts a single battle. The first column numbers 
the battles, the Oth row gives the initial distribution of 
vehicles, and the nth row gives the distribution after the 

nth battle; the second, (U), column gives the percentage of 
useable Blue vehicles at the beginning of the battle; the 
third, (R), column gives the percentage of damaged Blue 
vehicles at the beginning of the battle; the fourth, (U->U), 
column gives the percentage of Blue vehicles that have 

survived the battle, 95% of the U column, because of 
condition (1) in the above question; the fifth, (U->R), 
column gives the percentage of Blue vehicles damaged 
during the battle, which is column U minus column U->U; 
the sixth, (R->U), column gives the percentage of Blue 
vehicles repaired during the battle, which is 20% of column 
R, because of condition (2) in the above question; and the 
last, seventh, (R->R), column gives the percentage of Blue 
vehicles that remain damaged throughout the battle, which 
is        column        R       minus        column        R->U. 

Table 1: The Spreadsheet Model 

U R U->U U->R R->U R->R 

0 100.00 0.00 95.00 5.00 0.00 0.00 

1 95.00 5.00 90.25 4.75 1.00 4.00 

2 91.25 8.75 86.69 4.56 1.75 7.00 

3 88.44 11.56 84.02 4.42 2.31 9.25 

4 86.33 13.67 82.01 4.32 2.73 10.94 

5 84.75 15.25 80.51 4.24 3.05 12.20 

6 83.56 16.44 79.38 4.18 3.29 13.15 

7 82.67 17.33 78.54 4.13 3.47 13.86 

8 82.00 18.00 77.90 4.10 3.60 14.40 

9 81.50 18.50 77.43 4.08 3.70 14.80 

10 81.13 18.87 77.07 4.06 3.77 15.10 

11 80.84 19.16 76.80 4.04 3.83 15.32 

12 80.63 19.37 76.60 4.03 3.87 15.49 

13 80.48 19.52 76.45 4.02 3.90 15.62 

14 80.36 19.64 76.34 4.02 3.93 15.71 

15 80.27 19.73 76.25 4.01 3.95 15.79 

16 80.20 19.80 76.19 4.01 3.96 15.84 

17 80.15 19.85 76.14 4.01 3.97 15.88 

18 80.11 19.89 76.11 4.01 3.98 15.91 

19 80.08 19.92 76.08 4.00 3.98 15.93 

20 80.06 19.94 76.06 4.00 3.99 15.95 

21 80.05 19.95 76.05 4.00 3.99 15.96 



22 80.04 19.96 76.03 4.00 3.99 15.97 

23 80.03 19.97 76.03 4.00 3.99 15.98 

24 80.02 19.98 76.02 4.00 4.00 15.98 

25 80.02 19.98 76.01 4.00 4.00 15.99 

26 80.01 19.99 76.01 4.00 4.00 15.99 

27 80.01 19.99 76.01 4.00 4.00 15.99 

28 80.01 19.99 76.01 4.00 4.00 15.99 

29 80.00 20.00 76.00 4.00 4.00 16.00 

30 80.00 20.00 76.00 4.00 4.00 16.00 

Continued computation shows that the values reached in 
lines 29 and 30 of the spreadsheet model are an equilibrium 
state. Thus, 80% of the original force can be expected to be 
useable in any given battle, while 20% of the initial force 
will be in need of repair. 

To answer the question which began this section, if 40 
vehicles are needed for combat duty, and only 80% of the 
total force can be expected to be ready for combat duty, 
then the initial force should contain 50 vehicles. 

SURVTVABILITY AND REPAIRABILITY (SR) 

The goal of this section is to formulate the spreadsheet 
model of the preceding section as a Markov chain. This 
model, once formulated, will be called the SR model. First, 
however, Markov chains need to be briefly explained. 

A finite Markov chain, A/, is a system consisting of a finite 
number of states, s„ ..., s„ and probabilities, pt), where ptJ is 
the probability of moving from state s, to state st at any 
particular time step. Associated with the finite Markov 
chain, M, is an n x n matrix P = [p,j], called the transition 
matrix of the chain. Occasionally, an initial distribution of 
states, 7t° = (7t°„ ..., 7t°„) is also considered part of the chain. 

Now, the spreadsheet model of the preceding section can be 
reformulated as a Markov chain, giving rise to the SR 
model. This reformulation is, in reality, quite easy, easier, 
in fact, that the spreadsheet model. There are two states: U, 
for useable platforms, is state 1, s„ and R, for repairable 
platforms, is state 2, s2. Now, pu = .95, the probability of 
survival. It follows that pn = .05, since from state 1 the 
platform must either remain in state 1 or move to state 2. 
Also, p2] = .20, the repairability rate, and therefore pn = .80. 
Thus, the transition matrix of the model is: 

P = 
.95   .05 

.20   .80 

If the SR model is started with an initial distribution vector, 
7t° = (1, 0), or (100, 0) if a percent distribution is used as it 
was in the spreadsheet model, then 7i°P = it1 = (95, 5), which 
gives the values in the U and R columns of the second row 
(labeled "1") of the spreadsheet model, and in general n°P" 
= 7t", which will give the values in the U and R columns of 
the row labeled "n" in the spreadsheet model. 

It is now clear the that stable state that was found in the 
spreadsheet model is just the eigenvector of P. Furthermore, 
from the theory of positive (all entries are positive) 
stochastic (all rows sum to 1) matrices, it's known, [2, Lax], 
that this eigenvector has positive entries, is associated with 
an eigenvalue of 1, and is unique. 

The question mat was asked at the beginning of the section 
on the spreadsheet model can be restated more generally as 
follows: Given a survivability rate, s, 0 < s < 1, and a 
repairability rate, r, 0 < r < 1, what fraction/of the initial 
force will remain useable indefinitely? The answer, as 
indicated above, is the first component of the eigenvector 

1-s 
associated with eigenvalue 1 of the matrix 

1-r. 

. The original question had 5 = This gives / =  
l + r-s 

.95 and r = .20 so that/= .20/(l+.20-.95) = .80 or 80% as 
was originally found. 

To this point, the interest has been in finding/given .r and 
r, and the SR model has provided an easy way to answer 
that question. Suppose now, however, that / is given. Is 
there something that can be said about s and r so that the 



fraction of useable vehicles will not fall below/throughout 
a succession of combat engagements? It turns out that there 

is. 

Result: Let n° = (1, 0), and recall that 7t" = (xn, l-x„) wall 
be the distribution of the useable and repairable vehicles 

f 
after the nth battle. If s > f and r > ——(1 - s), then 

*„>/ for every n. 

This result is relatively straightforward to establish using 
mathematical induction. 

SURVrVABILITY, REPAIRABILITY, 
ANNIHILATION (SRA) 

AND 

Of course the above model, whether spreadsheet or SR, is 
severely unrealistic. In an actual engagement, vehicles are 
sometimes damaged beyond repairability and this 
possibility needs to be reflected in the model. Either the 
spreadsheet or the SR model could be extended to reflect 
the additional possibility of annihilation, but an examination 
of both models and what can be gleaned from each type 
should convince the modeler of the efficacy of the SR 
model. Thus, it is the SR model that is chosen for extension. 

The extension of the SR model to the SRA model begins 
with the addition of a state, state 3 or A, for annihilation. 
There also needs to be specified some positive probability, 
a, of a useable vehicle being annihilated during the course 
of a battle; thus, p,3 = a, and the transition matrix for the 

SRA model is: 

s   l-(s + a)   a 

r 1-r   0 

0 0    1 

The immediate thing to notice regarding this model is that 
state 3 is an absorbing state, that is, it can be entered but it 
can't be left. Hence, regardless of the initial distribution of 
vehicles, over time the distribution will tend toward 
(0, 0, 1). The question to be answered then is how fast can 
this be expected to happen. That is, what is the expected 
waiting time until absorption, given that the process starts 
in state 1 or U? 

A direct answer to this question can be obtained by 
CO 

evaluating  the  expression   2_, ^P(U - >A in k steps), 
*-/ 

which provides the expected number of steps for a platform 
to be absorbed after starting in state 1 (U). 

The contribution of 1-step paths is easy, since there is a 
unique one-step path from U to A, namely, U->A with 
probability a. 

There is also a unique path from U to A in two steps, 
namely U->U->A with probability sa. 

There are two 3-step paths from U to A, namely 
TJ->U->U->A and U->R->U->A with respective 
probabilities s?a and (l-(s+a))ra. 

There are four 4-step paths from U to A, namely 
U->U->U->U->A, U->R->U->U->A, U->U->R->U->A, 
and U->R->R->U->A. The first path has probability s3a, the 
last (l-(s+a))(l-r)ra, and the middle two each have 
(l-(s+a))rsa. 

In general, if there are n &-step paths, k>2, then there are 
In (£+l)-step paths, since from each A-step path, two 
(£+l)-step paths can be created, one from inserting a U after 
the initial U, and one from inserting a R after the initial U. 
Thus, since there is a unique 2-step path, we have via 
mathematical induction that there are 2*'2 £-step paths for 
each k>2. 

Also, from the probability of a £-step path the probabilities 
of the two (£+l)-step paths it generates can be calculated, 
but keeping track of everything it order to calculate the 
expected number of steps to absorption using the formula 
given above is a daunting task. It's here that the advantage 
of the SRA model over an extended spreadsheet model 
becomes abundantly clear. 

By Markov theory, [3, Isaacson and Madsen], the matrix 

N = 
fill      flu 

fl21      fll2. 

l-(s 

exists and is called the fundamental matrix of the model 
matrix Q, introduced in (1) above. Furthermore, nn is the 
expected number of times a platform will be in state U 
given that it started in state U, and nn is the expected 
number of times such a platform will visit state R. Thus, 
nu+nn will be the expected number of steps to annihilation 
for a platform that begins in state U. n2] and n^ provides 
analogous information for a platform that begins in state R. 

A numerical example should be helpful. Arbitrarily, let /?,, 
= .95 (U->U),^13 = .01 (U->A), so that/?12 = .04 (U->R). 
Also, let the repair rate be 20%. That is, p2] = .2 (R->U). 
Since pn (R->A) is 0, pn = .8 (R->R). Finally, />33 = 1 
(A->A) so that/jj, =pn = 0. Thus, 
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e- 
95 .04 .01 

.2 .8 0 

0 0 7_ 

,  and T = 

95 .04 .01 

.2 .8 0 

1 0 0_ 

. The eigenvector of T associated 

/r 
N = 

1   0 

.0    1. 

.95   .04 

.2     .8. 

100   20 

.100   25. 

with the eigenvalue 1 is 

It follows that for a platform that begins in a useable state, 
the average number of battles until annihilation is 120, and 
for 20 of those battles, the platform can be expected to be in 
the repair shop. 

The original question asked of the SRA model: How many 
steps on average until an initially useable platform is 
annihilated? has been answered quite handily. Can 
additional information be gleaned from the model? The 
answer is yes! (Would the question be asked if the answer 
were No?) Actually, by a slight modification, the model can 
be tricked into providing a good deal more information. 

SURVTV ABILITY, REPAIRABILITY, 
REPLACEMENT (SRP) 

Recall that in the SRA model, state 3 (A) was an absorbing 
state. In the SRP model, state 3 (P) is no longer an 
absorbing state, but always moves to state 1 (TJ). That is, in 
the SRP model, a platform annihilated in one battle is 
replaced by a new, useable platform in the next. Thus the 

matrix of the SRP model is: is: T = 

The questions to be answered are: What will be the expected 
replacement rate? and: What fraction of the initial force can 
be expected to be useable, given that replacements for 
annihilated platforms are effected. 

Since the SRP model has a finite number of aperiodic states 
(a state is aperiodic if the greatest common divisor of the 
various possible number of steps it takes to return to the 
state is 1) all of which can communicate, it is known, [3, 
Isaacson and Madsen], that a limiting distribution of states 
exists, and that the limiting distribution will be the 
eigenvector assocciated with the eigenvalue of 1. 

An example should be helpful. Take s = .95, r = .2, and a = 
.01, just as was done in the numerical example in the SRA 
model. The transition matrix for the SRP model is then 

s 1 •(s + a) a 

r 1-r 0 

1 0 0 

100^ 
121. 

or, approximately (.826 

.165 .008). It is worth noting that as n tends to infinity, 7" 
tends to the matrix 

700 20 1 ' 

727 121 121 

700 20 1 

727 121 121 

700 20 1 

727 121 121 

For example, 7*° is approximately (three decimal places) 

.826 .165 .008 

.826 .166 .008 

.827   .165   .008 

The two questions asked of the SRP model above can now 
be answered. The expected replacement rate will be slightly 

83 
under s of one percent, and the fraction of the force 

100 

expected to be useable will be slightly over 82— percent. 

CONCLUSIONS 

Models were constructed (SR, SRA, SRP) that permitted 
relatively easy answers to questions regarding the 
connections between survivability, repairability, and 
replacement over a sequence of battles, but it is the 
technique underlying these models, Markov chains, that is 
perhaps of the most interest. 

For example, one of the exit criteria for a new platform was 
that ninety percent of the force should survive a forty-eight 
hour battle. Markov chains would provide a natural way to 
model this exit criteria. 

In electronic warfare, the damage to components during the 
course of a battle is a topic of ongoing concern. The state of 
an electronic warfare device also can be naturally modeled 
using Markov chains. 
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ABSTRACT 

The Threat Oriented Survivability Optimi- 
zation Model (TOSOM) has been success- 
fully applied numerous times to support 
system level survivability suite design de- 
cisions. The model has proven useful at 
the system level, successfully supporting a 
number of recent system survivability 
suite development efforts. However, de- 
velopment of truly "optimal" survivability 
strategies requires an assessment of sur- 
vivability considerations at both the force 
level and the system level. The current 
floor version of TOSOM does not provide 
the information needed for analyzing sur- 
vivability strategies at the force level, be- 
cause necessary data, primarily encounter 
distribution, is not assessed 

To address this shortcoming, a variant of 
TOSOM was developed making the model 
useful for generating insights into force 
level survivability strategies. The modified 
TOSOM has been named TOSOM-Force 
and is designed to be a standalone variant 
of the original TOSOM. Specific modifi- 
cations include: 
• the ability to define a common threat 

environment for multiple system types 
• the ability to define encounter distribu- 

tions at the force level 
• the ability to calculate an expected like- 

lihood of achieving specific levels of 
force survivability 

This paper will describe the TOSOM- 
Force modifications and methodology as 
well as provide examples as to how the 
model can be applied to study force level 
survivability issues. 

INTRODUCTION 
FORCE    LEVEL    SURVIVABILITY 
DISCUSSION 

In the interests of finding the "best" sur- 
vivability approach, the military value of 

survivability technologies should be as- 
sessed at both the individual system level 
and at the aggregated force level. The 
system level assessment naturally tends to 
focus on specific system level attacks. The 
force level analysis will of necessity ex- 
amine a longer period of time and will 
consist of varied attacks distributed une- 
qually over multiple systems. 

Several questions immediately jump out 
when looking at the survivability of the 
"force". Intuitively, if each component is 
made as survivable as possible, then the 
larger unit will also be survivable (al- 
though probably not "optimal"). How- 
ever, the definition of "survival" seems to 
change as systems are aggregated into 
systems of systems. At what point is a 
"force" not survivable? How do you 
measure survivability at the force level? 
Traditionally, force survivability goals 
have been defined as retaining specified 
percentages of the original force over 
specified periods of time. For example; 
"80 percent or more of system A must 
survive 72 hours of combat". ThCTe is 
some question as to the utility of this ap- 
proach where forces are non- 
homogeneous. If all of the air defense 
elements have been destroyed the force's 
survivability may have been severely 
compromised even if 80% or more cur- 
rently function. The force's ability to resist 
further losses (particularly against aircraft) 
may be very low. Even if the force is ho- 
mogeneous it is possible that a few key 
losses will severely impact unit effective- 
ness. For example, suppose that only 10% 
of the total tanks in a battalion are lost, say 
a total of 5 systems. But if those systems 
include the Battalion Commander and 
each of the 4 line company commanders, 
although the bulk of the units systems are 
operational, unit effectiveness (and future 
unit survivability) has probably been im- 
pacted beyond what the numbers would 
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suggest. Not all individual systems, even 
of a particular type, are created equal. 

The constraints that drive system level de- 
cisions also apply at the system of systems 
(force) level. A very real question to be 
addressed is "Given a dollar to spend on 
force survivability, where do I spend it to 
get the most benefit?" 

But which benefit? Systems saved; lives 
saved; force performance? If we restrict 
ourselves to the survivability question - 
providing the most survivability possible 
for each dollar, we still have a problem in 
determining and defining the desired or 
required end state. 

How does the definition of survivability 
change as systems are collected into larger 
units or "systems of systems"? For a single 
system we typically treat survivability as a 
binary state. The system is either "go" or 
"no go", the system survives or it does not. 
When designing survivability suites, we 
attempt to maximize the probability of the 
"go" outcome given various system design 
constraints. Addressing the question of 
force level survivability is much more 
complicated. Although the force is a col- 
lection of various systems, the loss of a 
portion of those systems does not neces- 
sarily indicate a failure to survive on the 
part of the force. The force can be viewed 
as a "system of systems" - as long as the 
larger "force" system is still capable of 
performing its required function it sur- 
vives. On the other hand, if the larger sys- 
tem is no longer capable of performing its 
function, it has failed to "survive", even if 
significant portions of its subsystems are 
still operational. There is also the situation 
where the force can still perform some of 
its functions at degraded levels. The reality 
is that survivability in the force level con- 
text is not just white or black, go or no go, 
but a variety of shades of gray. 

The TOSOM model currently helps the 
survivability analyst explore the problem 
of system level survivability trades. The 
model treats the system as a target for a 
predicted array of threat systems and pro- 
vides insights into which survivability 
techniques provide the greatest level of 
protection against an expected value ap- 

plication of that specific threat array. As 
such the model addresses single system 
types, and utilizes an expected value as- 
sessment (weighted average) of the likeli- 
hood of encountering various types of 
threats and the consequence of that en- 
counter. Countermeasures with their asso- 
ciated burdens and anticipated effective- 
ness are proposed and an estimate of their 
impact on system survivability is made. 
By using the estimated suite burdens (cost, 
weight, etc.) and the expected perform- 
ance, the analyst can gain insights into the 
survivability design problem. Typically 
such an estimate would only be the first 
step in the analytical process. Potential 
solutions must then be evaluated in an op- 
erational environment (simulated) to de- 
termine if they provide the necessary per- 
formance. TOSOM can also be visualized 
as a resource allocation model. It attempts 
to allocate limited resources (the allowable 
"burden" levels) while at the same time 
satisfying the survivability requirements. 
Sometimes the probability of survival (Ps) 
requirement is set at a specific level, for 
example Ps £ .9, or sometimes the goal 
may be to simply maximize the Ps, while 
at the same time rerriaining within the pre- 
defined burden constraints. 

That same process can be logically ex- 
tended into the force level survivability 
problem, but additional assumptions must 
be made and some definitions agreed 
upon. The metrics for success change 
when moving up to a collection of some- 
times dissimilar systems. We still want to 
maximize survivability (or achieve a cer- 
tain level), but our definition of success is 
much less clear. Where before we were 
only concerned with the one system 
against a single expected value encounter, 
the force level problem requires the ability 
to address a multitude of systems of multi- 
ple type and varying densities. Where for 
the single system we were able to use a 
single expected value attack, the force 
level problem must consider an uneven 
distribution of attacks where some systems 
may be attacked frequently and others not 
at all. We still want to allocate survivabil- 
ity resources, but the goals are less de- 
fined. 
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For the sake of this discussion ignore sys- 
tem densities for the moment. Assume the 
force in question is made up of 2 different 
systems. System A will represent a tank 
and system B an Infantry Fighting Vehicle 
(IFV). A and B have different vulnerabili- 
ties and different capabilities. Is it more 
important to improve A's survivability 
over B's? Do we want them to have the 
same level of protection? Is that reason- 
able or desirable? 

One way to approach this problem would 
be to defme the desired end state. Say in 
terms of percentage of the force compo- 
nents surviving a hypothetical conflict. 
This could be done with high resolution 
simulations such as JANUS or CAST- 
FOREM, but set up and run time require- 
ments can be prohibitive. This approach 
also requires significant computer and 
analytical resources, and would still re- 
quire the utilization of a resource alloca- 
tion model such as TOSOM in order to 
bring the burden impact question into the 
study. 

In an effort to begin to address some of the 
problems of force level survivability 
analysis the TOSOM tool has been ex- 
panded into a tool which has been named 
TOSOM-Force. TOSOM-Force, like TO- 
SOM is NOT a simulation. Both models 
are designed to provide decision support 
information to a survivability analyst. 
While a large amount of data is produced 
in both models, the goal of TOSOM- 
Force, like TOSOM, is insight, not num- 
bers. Both tools are designed to work rap- 
idly on a modern personal computer. No 
other applications (other than Windows) 
are required to use the programs, although 
a spread sheet application such as Excel is 
useful for exarnining the results. 

To best understand TOSOM-Force, the 
analyst should have familiarity with the 
standard TOSOM model. Previous papers 
have provided TOSOM overviews and 
copies of these papers are available upon 
request to the author. 

TOSOM-Force has two components. The 
first is an expansion of the original TO- 
SOM threat tree. This expanded tree is 
again used to collect data on the expected 

threat array, but it differs from the original 
TOSOM threat tree by defining the threat 
encounter and consequence for up to three 
different systems against the same threat 
array. The second component of TO- 
SOM-Force is a calculator used to define 
force size and frequency of encounter and 
then calculate the probability tables which 
predict the likelihood of different percent- 
ages of force survival. 

THREAT TREES 

TOSOM-Force is an expansion of the ex- 
isting TOSOM decision support tool. TO- 
SOM-Force is designed to aid in surviv- 
ability allocation assessments at a force 
level. Where TOSOM requires the analyst 
to develop a threat tree specific to the 
weapon system under study, TOSOM- 
Force requires as its first step, the devel- 
opment of a more generic threat tree. The 
TOSOM-Force threat tree can best be de- 
scribed as the set of all threats to which 
any member of the force (made up of up to 
three different types of blue systems) 
might be exposed. These threats are placed 
into a TOSOM tree without encounter or 
consequence probabilities. The generic 
tree simply defines the structure of the 
threat. For each of the blue systems a copy 
of the generic tree is then weighted with 
the traditional TOSOM encounter and 
consequence data. Threats which are 
unique to one system will probably be "ze- 
roed" out in other systems specific trees. 

The generic tree approach is justified 
when it is assumed that each vehicle type 
that is a member of the "force" has the 
potential to encounter the same sorts of 
threats that other friendly system types can 
encounter. For example, IFV's and Tanks 
deployed together with likely both en- 
counter the same threat systems. The vul- 
nerability will vary. The actual encounter 
likelihood may vary. But it is assumed that 
the opportunity exists to encounter the 
same threats. 

TOSOM-Force expands TOSOM from 
collecting the data on one system, to col- 
lecting the data on as many as three differ- 
ent system types. This is done without sig- 
nificantly increasing the model total run 
time as once the data is collected only a 
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single pass through the E2 module is 
needed to generate the survivability suite 
performance data for all three systems. 

TOSOM-Force essentially can do up to 
three different TOSOM analyses at the 
same time. Of added benefit is that the 
threats are somewhat "calibrated"- the 
three blue systems are assessed in a 
"common" threat environment and the 
survivability suite results are generated 
with a single pass of the E2 module. 

TOSOM-Force modifies the TOSOM 
threat tree structure, integrating threat en- 
counter data across the variety of vehicle 
types (requiring survivability enhancement 
consideration) in the proposed force. The 
same threat systems (same tree) are used 
against each of the different blue systems; 
however, different probability of encoun- 
ter and consequence values are allowed as 
a function of the respective vehicle types. 

In TOSOM the threat tree allocates the 
single encounter likelihood across all 
threats to the system. In TOSOM-Force 
the actual threat tree structure used is the 
same for all the friendly systems being 
modeled. One tree (similar to how we used 
the same tree for multiple vignettes in the 
RST-V data set - same tree, different en- 
counter likelihoods ). However, each dif- 
ferent type blue system could have differ- 
ent values for likelihood and consequence 
of an encounter with any specific threat. 
Figure 1 shows the TOSOM-Force threat 
input screen. 
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Figure 1. 

BURDENS 
The burden file has been expanded to 
specify burden constraints for multiple 
systems. If the user is studying three dif- 
ferent systems (for this sake of this exam- 
ple say a Tank, an IFV and a Scout vehi- 
cle), then each of those systems would be 
expected to (and are allowed to) have dif- 
ferent burden budgets. 

COUNTERMEASURE DEFINITION 
TOSOM-Force allows countermeasures to 
be designated as system specific or force 
generic. The E2 module has been modified 
to allow countermeasures classified as 
"generic" to be included on any of the 
force systems when effectiveness calcula- 
tions are made. System specific counter- 
measures are allowed only on the desig- 
nated platforms. An example might help 
here. A smoke generator would probably 
be considered to be a "generic" counter- 
measure. You could probably put the same 
system on the tank, the IFV and the scout. 
It would impose the same burdens on each 
system (cost, weight, etc.). On the other 
hand, an Armor solution is likely to be 
unique to the system (system specific) it is 
designed for. You would not consider put- 
ting the tank armor package on the IFV. 
This approach reduces model run time and 
data storage requirements and allows the 
study of larger problems than could be ac- 
commodated otherwise. Remember that 
TOSOM (and TOSOM-Force) use ex- 
haustive enumeration to solve this prob- 
lem and any approach which reduces the 
number of unique countermeasures to be 
considered is useful. 

DISCUSSION OF TOSOM E2. 
The TOSOM E2 code has been modified 
to provide survivability and burden calcu- 
lations for up to three system types in- 
cluded within the force. There are two ver- 
sion of the E2 code. The first version gen- 
erates all possible combinations of up to 
15 defined countermeasures plus the "do 
nothing option". The E2 code does this by 
using a binary counting technique. Using 
binary (base2) arithmetic, it is possible to 
count to 32,000+ using 16 digits (O's & 
l's). Within the E2 code, each counter- 
measure has an assigned digit (one of the 
16 possible). By simply counting from 0 to 
32,000+, and examining each binary 
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number (a 0 in the column means coun- 
termeasure not present, and 1 means it is) 
every possible combination is generated 
with a single pass (only one loop re- 
quired). You can think of it as an odome- 
ter with 15 "wheels"(or spindles - each 
representing a different countermeasure) 
and only 2 digits on each wheel/spindle, a 
0 and a 1. Start with all the wheels show- 
ing "0"initially (the "do nothing") start 
"moving"(add "1") and then determine the 
countermeasure suite that results. By the 
time all the wheels show "1" (the put eve- 
rything on it option) you have looked at all 
possible combinations of 15 countermea- 
sures. 

The second version of the E2 generates the 
combinations for up to 32 different de- 
fined countermeasures (under certain re- 
strictions). This is a bit more of a problem. 
232 is about 4.2 billion combinations. This 
would be a significant strain unless we re- 
alize that we don't want most of these 
combinations. By introducing the concept 
of "feasible" and "acceptable" we can 
keep both the run time and the required 
data storage problems under control. 

The concept of "feasible" addresses the 
idea that many of our countermeasures are 
"either/or" - not both. We may want to 
consider 5 different armor packages for a 
vehicle, but only one at a time, not all five 
(or even 2) at once. This means we don't 
have to consider any combinations which 
include more than one of these armor 
packages. Going back to the odometer ex- 
ample, instead of only a "0" (countermea- 
sure not present) or a "1" (countermeasure 
present) on the wheel representing our ar- 
mor countermeasure, lets add a "2", "3", 
"4", and "5". The "1" represents the pres- 
ence of Armor option 1, the "2" represents 
Armor option "2", etc. We can now "spin" 
the odometer as we did before. Each com- 
bination will again be generated, but no 
combinations which include more than 
one of the Armor packages will be exam- 
ined. 

The "acceptable" criteria is used to reduce 
disk storage space. If the burdens resulting 
for any particular countermeasure suite 
exceed the user defined burden limits then 
the data from that calculation are dis- 

carded without saving. While this does 
nothing to relieve the burden on the com- 
puter processor, it can significantly relieve 
the demand for data storage. 

FORCE CALCULATOR 
Frequency of encounter has still not been 
addressed. At this point we have TOSOM 
output similar to what is currently pro- 
duced, however common threat and 
countermeasures are built in so that output 
is automatically calibrated to a baseline 
threat situation. The same result could be 
achieved with multiple TOSOM scenarios 
using the existing model. However data 
integration problem would be VERY 
complicated. The way TOSOM-Force ad- 
dresses the problem of encounter fre- 
quency follows. 

A data structure for defining encounter 
frequency distributions was first devel- 
oped. It might be possible to analyze sev- 
eral standard CASTFOREM scenarios for 
insights into what these distributions might 
typically look like. If this analytical ap- 
proach were to be used the CASTFOREM 
scenarios could also be used to define the 
threat trees. This encounter distribu- 
tion is modeled by apportioning the en- 
counters appropriately among a set of up 
to 30 vehicles. Figure 2 shows the en- 
counter distribution screen. 
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Figure 2 

TOSOM-Force uses straight conditional 
probability to calculate expected levels of 
force survival. The module output is in a 
table of the probability of various num- 
bers and combinations of systems 
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PUTTING IT TOGETHER 
The concept is to take the Ps values gener- 
ated by TOSOM for each potential system 
survivability suite, and then process each 
value through an encounter distribution for 
a fixed quantity of systems (the "Force") 
involved in a survivability "situation". 
There are multiple assumptions and sim- 
plifications made in order to make this 
work. The results should still be useful for 
the purposes of gaining insights into the 
problem of designing force level surviv- 
ability countermeasure strategies. 

The TOSOM-Force module requires that a 
probability distribution be provided to 
model frequency of encounter data. The 
method used to calculate the probability of 
different levels of force survival is 
straightforward, but somewhat tedious - it 
also has a tendency toward combinatorial 
explosion for larger sample sizes. The 
computational intensity can be mitigated 
by predefinition of the desired force level 
survivability thresholds, which will be ex- 
plained later in this paper. 

The approach selected calculates the prob- 
ability of each possible level of surviving 
force system of a given type. For example, 
starting with a force of 10 systems, calcu- 
late the probability of exactly 0,1,2,...10 
systems surviving. The process for doing 
this is fairly simple, and actually relies 
upon the same "counting" engine algo- 
rithm employed in the exhaustive enu- 
meration (E2) module used in TOSOM. In 
this case, as in the TOSOM E2 module, 
there will be 2" calculations made, where n 
equals the number of a specific system 
type within the force (where as in TOSOM 
n is the number of countermeasures). For a 
force of 10 tanks, there will be 210 (1,024) 
calculations required. A force of 20 tanks 
requires 220 or 1,048,576 calculations. 

What TOSOM-Force does is generate 
every possible combination of surviving 
members of the "force", one calculation 
for each possible combination. Each cal- 
culation takes into account the analyst 
provided distribution of encounters. The 
calculations are then sorted into the appro- 
priate "bins" (0 survivors, 1 survivor,... 10 
survivors) and then combined to provide 
the probability of a specific numbers of 

survivors. An example the TOSOM-Force 
output is provided in table 1 below. 

P(8) X P(s=x) P(s>=x) 
0.8 0 0 1 
0.8 1 0 1 
0.8 2 0 1 
0.8 3 0 1 
0.8 4 0 1 
0.8 5 0 1 
0.8 6 0 1 
0.8 7 0 1 
0.8 8 0.000009 1 
0.8 9 0.000216 0.999991 

0.8 10 0.002249 0.999775 

0.8 11 0.013367 0.997526 

0.8 12 0.050413 0.984159 

0.8 13 0.126541 0.933746 
0.8 14 0.21602 0.807205 

0.8 15 0.251866 0.591185 
0.8 16 0.198306 0.33932 

0.8 17 0.102311 0.141014 

0.8 18 0.032598 0.038703 
0.8 19 0.005699 0.006104 

0.8 20 0.000406 0.000406 

Table 1. 

The chart is interpreted as follows. For the 
probability distribution used (not shown), 
the probability of exactly 5 survivors is 
.142 or about 14%. This number is found 
by finding the number of survivors in the 
first column and reading the correspond- 
ing value in the 2nd column. The probabil- 
ity of having 5 or more survivors is found 
by continuing on the corresponding value 
in the 3rd column which in this case is .332 
or about 33%. 

CONCLUSION 

TOSOM-Force provides a useful tool for 
investigating some of the issues of interest 
when studying force level survivability. It 
helps fill a niche in the fairly sparse array 
of models and analytical tools available to 
address the optimal allocation of limited 
resources for designing or modifying 
combat systems. 
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Impact of Aim Point Ambiguity on Vehicle Survivability 

Tom Faria and Sharad Kumar 

General Dynamics Amphibious Systems 

Woodbridge, VA 22191 

Abstract 

Analysts of direct fire systems have long 
appreciated the error introduced by a gunner's 
inability to accurately identify the target center 
of mass. This component of a detailed error 
budget is frequently termed the "gun laying 
error." (Ref "The Evaluation of Combat 
Vehicle Fire Control/Gunnery Systems" by K. 
R. Pfleger and R J. Bibbero, Report R-1937, 
dated September 1969) In recent years, this 
error has been considered as a candidate for 
improving the survivability of a vehicle: e.g., 
forcing the threat gunner to increase the "gun 
laying error" by making it difficult to accurately 
identify the vehicle "center of mass." 

Most combat effectiveness models do not 
accurately portray this error, but rather attempt 
to approximate it by modifying the dispersion of 
the gun system. This note compares the 
"probability of hit" obtained using the dispersion 
approach approximation to the "probability of 
hit" obtained by assuming a distribution of aim 
points uniformly spread over a region of the 
target; e.g., an "ambiguous center of mass." 
The differences in the magnitudes and trends of 
the two approaches are most dramatic at the 
shorter ranges, but are still significant at 3000m. 

Background 

Stealth or signature control technologies have 
multiple impacts on survivability. The most 
obvious is, of course, the increase in the time to 
detect the target vehicle. Of potentially equal 
importance is the introduction of aim point 
errors into the fire control error budget of the 
threat. This is accomplished by misleading the 

threat gunner as to the target vehicle center of 
mass; the traditional aim point for most direct 
fire threats. 

Analysts of direct fire systems have long 
appreciated the impact of not being able to 
accurately identify the target center of mass 
(CM). This error is explicitly included in the 
detailed fire control error budget and is 
frequently termed the "gun laying error." In the 
traditional budget, the error results from the 
target filling a large portion of the sight "field of 
view" and the gunner not accurately perceiving 
the location of the vehicle CM. Since the 
system errors are normally measured in terms of 
an angle (mr), the "gun laying error" is 
assumed to decrease with range; e.g., the 
ambiguity of the fixed size target area presented 
to the gunner decreases with range in terms of 
included angle. 

It is this aim point ambiguity resulting from the 
modification of the vehicle signature that is the 
subject of this note. 

The most common approach to accounting for 
aim point ambiguity is to increase the dispersion 
of the fire control system while retaining the 
aim point at the vehicle CM The dispersion 
increase is usually accomplished by assuming an 
additional angular error (mr) which does not 
decrease with range. This approach of a 
constant angular error is contrary to the 
mechanics-physics of the error origin and can 
lead to an inaccurate assessment the probability 
of hit and, consequently, survival. 

Consider the following. The error can exist only 
when the threat gunner is aware of the vehicle. 
Through an undefined cue, he has identified 
some region on (or adjacent to) the vehicle. 
This cue is may be a shadow, glint, dust, etc. 
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These cues are equally likely to occur at any 
position on (or around) the vehicle. The gunner 
then identifies a region adjacent to or around the 
cue that does not match the surrounding 
background. This "region of ambiguity" (with 
respect to the background) or the cue itself 
becomes the target. This argument supports the 
assumption of a uniform distribution of aim 
points over the presented area of the vehicle 
rather than an increase in round dispersion 
about the CM. 

The two approaches are depicted in figure 1. 
The CM of a Bradley has been targeted in the 
left picture. The inner ellipse represents the 
dispersions of a baseline threat system. The 
outer ellipse represents the dispersions increased 
to account for the lack of a well-defined CM. 
The right picture is the same Bradley, but with 
an undefined CM and a random distribution of 
aim points spread over the presented area. 
Potentially, even the ground shadow is an aim 
point. 

Common approach Reality 

? 

I Increased dispersion to account 
/ for aim point ambiguity 

Normal system dispersion 

Gunner detects target, but cannot 
identify center of mass 

Figure 1: Comparison of Two Approaches 

This note quantifies the results of the two approaches, 1) increase in aim point dispersion vice 2) uniform 
distribution of aim points, for a standard NATO frontal threat gunnery target. 

Technical Approach 

The technical approach is depicted in figure 2. 
A standard NATO 2.3m x 2.3m(frontal aspect) 
target is used for the analysis. The total error 
budget for the weapon dispersion is assumed to 
be 0.5 mr for both horizontal (x) and vertical (y) 
coordinates; these dispersions are typical of a 
good direct fire medium or large caliber cannon. 
The probabilities of hit are assumed to follow a 
Gaussian distribution about the aim point. For 
the degraded dispersion approach, the target 
true CM is the aim point for both the baseline 
(0.5 mr) and degraded (0.6 mr) dispersions. 
The ambiguous aim point approach assumes that 

the aim points are uniformly distributed with 
respect to the target CM from -X to +X in the 
horizontal direction and from -Y to +Y in the 
vertical direction. That is, the "region of 
ambiguity" for the aim point is +/-X to +/-Y 
with respect to the target CM. The dispersion 
for the "region of ambiguity" approach is held 
constant at 0.5 mr with respect to the actual 
cannon aim point. The simulation was built in 
an Excel spreadsheet. The actual aim points for 
the "region of ambiguity" were drawn randomly 
from uniform distributions in the horizontal and 
vertical directions. Trials of 1000 aim point 
draws (iterations) were averaged for each range 
and set of conditions. An example of the 
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uniformity of the aim point distribution is shown 
in figure 3. A plot of the X and Y aim points 
for one trial (1000 iterations) is shown for a 
region of ambiguity of   -1<=X<=1 and - 
1 <=Y<=1. For a perfectly uniform distribution 
each of the 20 bins would contain 50 points. The 
stochastic nature of the simulation is apparent in 

•    Standard NATO 2.3m x 2.3m target 

that number of points per bin ranges from 39 to 
65, but uniformity of the X and Y distributions 
is both apparent and acceptable. The P(hit) 
results for trials of 1000 iterations are quite 
repeatable. An example of this repeatability is 
shown in figure 4 for the "region of ambiguity" 

Region of ambiguity defined about target "Center of Mass" 
Actual aimpoints randomly placed (using uniform distribution) within 
region of ambiguity 
"Probability of Hit" averaged for 1000 iterations 

2.3m 

Region of 
Ambiguity 
+/-Xm,+/-Ym 

True Center 
of Mass 

Figure 2: Technical Approach 
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Figure 3: Uniformity of X,Y Aim Point distributions 

Range = 1000m 

X Dispersion = 0.5mr 

Y Dispersion = 0.5mr 

Region of ambiguity 

- -lm<X< lm 

—lm<Y< lm 

1000 iterations per trial 

Trial# Avg P(hit) 
1 0.748 
2 0.754 
3 0.752 
4 0.745 
5 0.741 
6 0.745 
7 0.751 
8 0.752 
9 0.748 
10 0.751 

2.3m 

Region of 
Ambiguity 
X=+/- lm 
Y=+/- lm 

True Center 
of Mass 

Figure 4: Repeatability of Results 
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case -1<=X<=1 and -1<=Y<=1. P(hit)'s for ten trials of 1000 iterations each are tabulated in the upper 
right hand comer of the figure. The "probability of hit" for 10 consecutive trials ranged from 0.741 to 
0.754. This is a "peak-to-peak" difference of 0.013; e.g., less than 2% of the band. This level of 
repeatability is adequate for a study of this nature. 

Results 

The results of this academic exercise are 
presented in figure 5. "Probabilities of hit" are 
plotted and tabulated for ranges between 500 
meters and 3000 meters at increments of 500 
meters. Analysis results are labeled according 
to the size of the "region of ambiguity" and the 
weapon dispersion. Dispersions and "regions of 
ambiguity" dimensions are assumed to be the 
same in both the horizontal and vertical 
directions. For example, the label "+/- 
lm|0.5mr" indicates that the region of ambiguity 
is -1<=X<=1 and -1<=Y<=1 and the dispersions 
are 0.5 mr in both the horizontal and vertical 
directions. A "region of 0 ambiguity" indicates 
that the gunner can exactly identify the target 
CM. Results are presented for five sets of 
conditions "+/-0m|0.5mr," " +/-0m|0.6mr," "+/- 
0.5m|0.5mr," "+/-lm|0.5mr," and "+/- 
1.5m|0.5mr." The "region of ambiguity" of one 
square meter or approximately 60% 
(lmA2/1.69mA2) of the target area will be used 

as a discussion example. In the primary ranges 
of interest, 1km to 2.5km, the results of the two 
approaches differ in both the magnitude and 
trend (shape). For this 60% ambiguity size 
region P(hit)'s for 1000m and 2500m are 0.745 
and 0.354 respectively. Increasing the 
dispersion of the baseline gun by 20% (0.5 mr to 
0.6 mr; e.g., adding an additional 0.33mr error) 
provides the best overall match to a "region of 
ambiguity" equal to 60% of the total target area. 
P(hit)'s for a dispersion of 0.6mr at 1000m and 
2500m are 0.892 and 0.31 respectively. The 
greatest difference in P(hit) is at the 1km range; 
the P(hit) for the increased dispersion is 17% 
higher than the ambiguous aim point approach. 
The two approaches cross at approximately 
1800m. At 2.5km, the ambiguous aim point 
approach is 14% higher than the increased 
dispersion approach (and the "per cent" 
difference will continue to increase with range). 
Due to the inherent differences in the two 
approaches similar results will obtain for all 
conditions and ranges. 
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Impact of Aim Poim Ambiguity 
Actual Aim Point Randomly Ptaoad within Ambiguity 
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range(m) 0m|0.5mr 0m|0.6mr +/ -,5m|0.5mr +/-lm|0.5mr +/ -1.5m|0.5mr 
500 1 1 1 0.919 0.574 
1000 0.957 0.892 0.911 0.745 0.523 
1500 0.765 0.638 0.717 0.592 0.435 
2000 0.562 0438 0.535 0.457 0.364 
2500 0.413 0.31 0.397 0.354 0.294 
3000 0.31 0.228 0.301 0.275 0.238 

Figure 5: Aim Point Ambiguity Study Results 

Conclusions 

The conclusions are summarized in figure 6. In 
the primary range of interest for current direct 
fire cannons, 1km to 2.5km, both the 
magnitudes and the trends of the results for the 
two approaches differ. The differences are 
inherent to the mechanics of the approaches and 

cannot be eliminated by a judicious choice of 
parameters. The magnitudes of the P(hit) 
differences can easily exceed 10% This 
difference will carry through to the probability 
of survival. Since 10% is frequently considered 
the decision point for justifying a new system, 
this error is potentially adequate to cause an 
unreasonable choice in the final vehicle design. 

24 



Conclusions 

A 10% change is frequently considered the minimun necessary to 
justify a new system 
For direct fire cannons, the difference in the "increased dispersion" 
and "area of ambiguity" approaches can exceed 10% 
Choice of "increased dispersion" approach can lead to a poor choice in 
system design 

Figure 6: Conclusions 
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ABSTRACT 

Target acquisition modeling plays an important role 
in the mission planning process associated with both 
man in the loop and autonomous command and 
control systems. The type of information required 
typically varies as a function of the amount of time 
before a mission. In general, early in the planning 
process, qualitative information in the form of a 
device being marginally or unfavorably impacted by 
environmental factors can be very useful in paring 
the list of potential devices. However, as the mission 
time draws nearer, quantitative information such as 
detection and recognition ranges for specific targets 
becomes more valuable. To effectively present 
options with respect to the use of these target 
acquisition devices, a simple tool needs to be 
available for computing and displaying both types of 
information. A critical part of this requirement for 
simplicity is the automated retrieval of environmental 
input data for the model from a database of values. 
As part of the Army's Battle Command System 
(ABCS), the Integrated Meteorological System 
(IMETS) can provide this database of information. A 
program has been written to retrieve from the IMETS 
Gridded Meteorological Database (GMDB) the 
required current and historical data for a user 
specified location. The GMDB contains high- 
resolution (10 km in the horizontal) model data as 
forecast by a prognostic mesoscale model. This 
paper presents in more detail the intuitive model and 
interface that has been developed to allow the user to 
automatically query the GMDB for the required 
environmental data and then compute and display the 
qualitative and/or quantitative information affecting 
the performance of target acquisition devices. Also 
reviewed are plans for an Army specific version of 
the Air Force Target Acquisition Weather Software 
(TAWS) and ongoing efforts to more fully automate 
the process of computing and presenting information 
to the user. 

INTRODUCTION 

As evidenced by the number and types of papers 
presented at the annual Ground Target Modeling & 
Validation Conference, there is a significant amount 
of basic research being performed related to target 
signatures, propagation, background characterization, 
simulation, etc. Perhaps as important to the tactical 
end user, however, is the design and interface of the 
resulting target acquisition models. Unless the model 
presented to this user is intuitive and easy to use and 
interpret (as well as fast running), the underlying 
physics associated with the underlying models may 
not matter since the user may not use the product. 

WEATHER TACTICAL DECISION AIDS 

Weather tactical decision aids (TDAs) come in two 
forms: rule-based and physics-based. Rule-based 
TDAs are constructed using rules that have been 
collected from field manuals, training centers and 
schools, and subject matter experts. An example of 
one such rule would be "usage of TOW2 is not 
recommended for visibilities less than 3km". 
Physics-based TDAs employ physics calculations 
that have their basis in theory or field measurements. 
Thus a physics-based TDA employs routines and 
physics that allow it to ascertain the probability of 
detecting a given target at a given range under 
existing or predicted weather conditions. This is in 
contradistinction to the rule-based TDA which would 
suggest that a particular system be used under given 
weather conditions; no target is required. The trade 
off between target acquisition (physics-based) and 
system selection (rule-based) is run time: rule-based 
TDAs run considerably quicker than physics-based 
TDAs. 

The Army's IWEDA is being adopted as the model 
for rule-based weather impact decision aids for all the 
services. A rule-based decision aid provides a 
general framework based on lists of "if-then-else" 
rules and pre-established critical weather thresholds 
for moderate or severe impacts. The Air Force, Navy 
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and Army, with concurrence from the Marine Corps, 
are now collecting weather impacts using this 
common format, and the current database of 
hundreds of rules are expected to expand to several 
thousands of rules. The Army IWEDA is designed 
for the Army Common Hardware/software and 
DII/COE as part of IMETS, the C41 weather system 
currently fielded and being improved for the Army 
First Digitized Division. 

Physics based tactical decision aids, as distinct from 
rule-based decision aids, perform detailed 
performance calculations for specific systems. Tri- 
service models for electro-optic propagation, such as 
the Target Acquisition Weather Software (TAWS), 
are being linked to rule-based TDA's to provide more 
detailed effects and quantitative information. 

TAWS 

The Tri-Service TAWS and its predecessor, the Air 
Force's EOTDA (the Army's TDA, TARGAC, is a 
variant of EOTDA), are software models that predict 
the performance of weapon systems and direct view 
optics based on environmental and tactical 
information. Performance is expressed primarily in 
terms of maximum detection, recognition or lock-on 
range. The EOTDA and TARGAC supported 
systems in three regions of the spectrum: visible/TV 
(0.4 - 0.9 um), Laser (1.06 um) and far IR (8.0 - 
12.0 um). TAWS extends this to include the mid-IR 
(3.0-5.0 urn). 

TAWS consists of three essential parts: an inherent 
target contrast model, an atmospheric effects model, 
and a system performance model. These basic 
models are required for any type of device treated by 
TAWS; however, the nature of the models that 
perform a given function may vary considerably 
depending on the system of interest. For example, 
the inherent contrast for visual and TV devices 
depends on the relative reflectances of the target and 
background. Thus atmospheric scattering and solar 
illumination [Bangert, 1998] are overriding factors. 
For thermal imagers, the inherent contrast consists of 
the difference in temperature between the target and 
background. Solar loading is the dominant factor 
thus requiring access to previous and forecast 
conditions required by the thermal balance model 
[Johnson, et al, 1995, 1998]. The nature of the 
calculations of atmospheric propagation is also 
different in the visual than in the IR. Scattering 
primarily influences the former, while the latter is 
dominated by absorption. The Army Model and 
Simulation Office standards category model Acquire 
is used for  sensor performance  [Acquire,  1995]. 

TAWS will also allow for automated meteorological 
ingest via the Air Force Weather Information 
Network; these meteorological variables may be 
selected or changed through numerous Graphical 
User Interfaces (GUIs). TAWS version 1 is 
scheduled for release in December 1999 [Tattelman, 
1999]. 

IWEDA 

In an effort to simplify the manner in which 
environmental impacts on weapon systems are 
displayed to the user, the Army Research Laboratory 
has developed the rule based Integrated Weather 
Effects Decision Aid (IWEDA) [Sauter, 1999]. 
IWEDA provides current and forecast qualitative 
impacts on approximately 70 weapon systems (e.g., 
attack helicopters, fixed wing aircraft, personnel, etc) 
to both meteorologists and non-meteorologists 
throughout the ABCS (the Army's tactical command 
and control system). IWEDA "rules" are fired 
against the GMDB parameters via an IWEDA 
preprocessor that then populates several relational 
database tables. A separate program, DIRECT, that 
allows the Staff Weather Officer (the IMETS 
operator) to edit and delete specific rules associated 
with the weapon system has also been developed 
[Torres, 1998]. DIRECT allows for tailoring of the 
ruleset to accommodate a specific exercise (e.g., 
peacetime vs. wartime values) or user (e.g., beginner 
pilots may have more strict limitations regarding the 
operation of an aircraft than an experienced pilot). 
Users configure systems as to how they will be 
employed, select the systems or missions they wish to 
see impacts on, then click a button to have the 
impacts automatically computed via internal queries 
to the database tables. Once the queries are 
completed (typically a few to several seconds) a 
color-coded (red, amber, green) matrix is displayed 
conveying the impact of the environment on the 
systems of interest (figure 1). Drill down capabilities 
are available via mouse clicks such that the user can 
query and view various levels of information (e.g., 
condensed or detailed text impact statements, spatial 
distribution of the impacts via a map overlay [figure 
2], etc) depending on their requirements. For 
example, by clicking the left mouse button anywhere 
over the map overlay, the full impact statement on 
the particular item of interest is retrieved and 
displayed to the user. Thus, it was a simple extension 
of this concept to allow the computation and display 
of quantitative target detection and recognition 
ranges from within the familiar IWEDA GUI. In 
practice, target acquisition devices within the rule 
based IWEDA could be evaluated to assess locations 
and times that particular sensors could be employed 
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Figure 1. I WEI) A Weather Effects Matrix (WEM) with Condensed 
Impacts 
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Figure 2. I WE DA Map Overlay for AH-1F (Cobra) Helicopter with 
Full Impact Statement 

with little environmental degradation. For users 
requiring specific range information, IWEDA will be 
modified to call the physics based algorithms to 
compute this information for specific locations on the 
IWEDA map overlay. 

SOFTWARE 

Automated Environmental Data Retrieval 

Although the target acquisition software has not yet 
been integrated within IWEDA as a single 
application, the target acquisition program resides as 
a standalone application on a Sun Ultra workstation 
within the development environment at ARL. This 
application requires a significant amount of 
environmental data, both for the present and 
(depending on the sensor) past. Expecting the user to 
input all of this information when there is gridded 
meteorological data available is unrealistic.   Thus a 
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front-end module was developed to automatically 
query, retrieve, and chronologically order the 
required data. Upon user entry of a valid geographic 
location and date/time field mis information is passed 
to the data retrieval module. The GMDB typically 
has data at 10 km horizontal resolution and to a 
height of approximately 20,000 ft above ground 
level. The model used to populate the GMDB is the 
ARL developed Battlescale Forecast Model (BFM) 
[Henmi and Dumais, 1998] and is typically run twice 
a day with the forecast time extending to 24 hours. 
BFM is a hydrostatic model providing for the 
forecast of numerous meteorological parameters and 
is currently fielded with the Army's IMETS. A post 
processing application, the Atmospheric Sounding 
Program (ASP) [Passner, 1999], derives additional 
environmental parameters (e.g., turbulence, icing 
intensity, visibility) from the basic BFM parameters 
and writes them to the GMDB. The amount of time 
required to execute the BFM and ASP (to include 
writing to the GMDB) is typically less than an hour 
on a Sun Ultra. Archiving of two GMDB data sets 
(the current and prior run) will allow for gridded data 
that extends a minimum of approximately 16 hours 
and a maximum of 28 hours in the past to be 
available (receipt of model initialization data from 
the Air Force Weather Agency and model run times 
add several hours to the time that gridded data is first 
available). Depending on the parameter being 
retrieved, the value is obtained either via a weighted 
interpolation between surrounding grid points (e.g., 
wind speed) or by assigning the value of the nearest 
neighboring grid point (e.g., precipitation type). 
Once successfully retrieved from the GMDB it is 
passed to the target acquisition routine where the 
detection and recognition ranges are computed and 
then graphically displayed to the user. 

Interim Target Acquisition Module 

Because TAWS version 1 is not currently available, 
the Army's version of EOTDA, TARGAC, is being 
utilized to determine target acquisition ranges within 
IWEDA. The basic differences between TARGAC 
and EOTDA are the inclusion of Army sensors and 
targets and the ability to examine surface to air 
scenarios. As a stand-alone program TARGAC is a 
part of, and available through the Electro-Optical 
Systems Atmospheric Effects Library (EOSAEL) 
[Shirkey, et al, 1987]. TARGAC has been 
successfully coupled with the GMDB thereby 
precluding the necessity for inputting past, present 
and future meteorological data. Coupling with the 
GMDB also allows target acquisition to be 
accomplished in near real-time under forecast 
weather conditions. 

Migration and Integration ofTA WS-A with IWEDA 

Since TAWS is a Tri-Service program, version 1 and 
all subsequent versions will include Army targets and 
sensors. The Night Vision and Electronic Sensor 
Directorate's range performance model for target 
acquisition systems, Acquire, will be added in 
version 3 of TAWS. A new atmospheric scattering 
routine is also being added to TAWS to allow 
examination of all possible geometrical scenarios 
(e.g. air-to-ground, ground-to-air, ground-to-ground, 
and air-to-air). However, in accordance with the 
Army's IMETS philosophy of keeping input as 
simple as possible a variant of TAWS will be used in 
IMETS. This variant will be called TAWS-Army 
(TAWS-A) and will be functionally equivalent to 
TAWS. The salient differences will be in allowed 
user input: TAWS has numerous GUIs to allow 
automated or manual input and manipulation of 
meteorological parameters. Since TAWS-A will 
have automatic ingest of weather conditions through 
the GMDB there will only be one GUI (figure 3) 
which will be used to initially select sensor, target 

tMTWi(NiiliW) 

tecnc* ToiMtan*' 

AfM*K.-Tnr \im Miner ttmx t+D • 

ooMWfn»BKCQ»»mt»i;ocrtci'ii»m«iiiiai 1 

  

Figure 3. TAWS-A Input GUI 

and background information. Currently some 
additional information is required about the 
background aerosol. Since the purpose of TAWS-A 
is to aid the commander make rapid decisions 
concerning sensor and/or platform selection, the 
graphical output from TAWS-A will also be different 
from TAWS. For sensor selection TAWS-A output 
will be in the form of bar charts (figure 4) or weapon 
fans (figure 5). 
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Figure 4. TAWS-A Example Sensor 
Selection 

Efforts are currently underway to integrate TARGAC 
and, when released, TAWS-A, with IWEDA. As 
outlined in the introduction, this would allow the user 
to click on any location on the IWEDA map overlay 
(figure 2) to have the detection and recognition 
ranges computed for a specific target/sensor pairing. 
The default sensor would be for the device currently 
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Figure S. TAWS-A Example Weapons Fan 

being evaluated by IWEDA. It is anticipated that 
upon the user click on the map overlay, a simple GUI 
would pop up prompting the user for the specific 
sensor and target. Environmental data required for 
the computation would be automatically retrieved 
from the GMDB for the specified point. Allowing the 
entry of a different device will allow alternate sensors 
to be evaluated in the event the current sensor is 
inadequate for the acquisition. In separate windows 
the detection and recognition ranges would be 
displayed via bar charts (e.g. figure 4) and the 
weapons fan would be overlaid on top of the map 
display (e.g. figure 5). This feature will color code 
the detection and recognition ranges for numerous 
azimuths either over a full circle or some smaller arc 
as specified by the user. Digital terrain elevation data 
will also be read such that masking due to intervening 
terrain can be incorporated into the weapon fan 
display. Eventual incorporation of threat sensors will 
allow comparison of friendly and threat systems for 

aiding in the determination of when and where one 
force may have the advantage over another. 

SUMMARY 

Providing a tactical commander with an easy to use 
and interpret application leveraging the latest target 
and sensor modeling technology will allow for near 
real time evaluation of sensor employment options. 
Automating the environmental parameter retrieval 
using a prognostic data set further enhances the 
application by allowing for realistic planning based 
on evolving weather. Although the current gridded 
data set currently only extends to 24 hours, a 96 hour 
capability is anticipated in FYOO. Allowing for either 
standalone running of TAWS or via an integrated 
environment with IWEDA provides additional 
flexibility. Leveraging ARL's experience and role in 
the ABCS, this software will be transitioned to the 
fielded Army incrementally over the next several 
years providing an advanced capability where 
virtually none exists today. 
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ABSTRACT 

Predicting the Radar Cross Section (RCS) of complex 
targets is a complicated problem in electromagnetic 
scattering theory. Radar scattering theory has been 
studied extensively for many decades. There have been 
many software packages developed for calculating the 
RCS of complex targets, however, those that have been 
fully validated, and are available to the radar scattering 
community, require the purchase of a very expensive, 
high-powered Unix platform. 

Surface Optics Corporation has developed a state-of-the- 
art, commercial off-the-shelf (COTS) software package 
that disposes of the need for buying an expensive 
computer. RadBase is a user-friendly software product 
that generates accurate RCS and Amplitude & Phase data 
for complex targets and cultural features. It is a Java- 
based application that executes on PC's running 
Windows (95,98,NT) and Unix-based platforms. 
RadBase calculates RCS values using the physical optics 
approximation to electromagnetic scattering. 
Additionally, RadBase incorporates physical phenomena 
such as blocking, double bounce interaction, edge effects, 
polarization, traveling waves and creeping waves. 

In this paper, the capabilities of RadBase 1.0 will be 
described. A brief description of the scattering 
phenomena, input and output data is presented. A full 
RadBase validation study is presented as well as RadBase 
comparisons with the radar scattering code, Xpateh. 

INTRODUCTION 

Surface Optics Corporation (SOC) has developed a user- 
friendly software product for generating accurate Radar 
Cross Section (RCS) and Amplitude and Phase data for 
complex targets and cultural features as a function of 
frequency, polarization, incident angle and azimuth 
angle. RadBase calculates an object's RCS and 
Amplitude and Phase data using the Physical Optics 
approximation to electromagnetic scattering and includes 
the following effects: 

• Blocking 
• Double Bounce Interaction 
• Edge Diffraction 
• Polarization 
• Traveling & Creeping Waves 

RadBase is a Java-based application and has a user- 
friendly Graphical User Interface (GUI), with easy to 
understand input parameters. This allows it to run on 
Windows 95, Windows 98, Windows NT and UNIX 
(available Release 1.1, Third Quarter, 1999) operating 
systems. RadBase currently, supports the following 3-D 
object model formats: 

• STK .mdl Format 
• Open Flight (.fit extension) 
• ACAD (e.g. Xpateh facet extension) 
• Object (.obj extension) 
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UNIQUE FEATURES 
The user does not have to be a radar expert in order to set 
up and run RadBase. RadBase gives the user: 

• Flexibility 
• RadBase is a true toolkit 
• Users can easily control the program and vary 

parameters 
• Accuracy on a PC 
• RadBase generates accurate RCS data for complex 

targets 
• RadBase does not require the purchase of a high- 

end SGI 
• RadBase has been validated against range 

measurements 
• RadBase output compares extremely well with 

Xpatch 
• Speed 
• RadBase is very efficient 

TECHNICAL DESCRIPTION 
The core of RadBase is a software module that calculates 
the RCS and Amplitude & Phase data for complex 
targets and cultural features as a function of frequency, 
polarization and target/observer geometry. This core 
module uses the physical optics approximation to 
electromagnetic scattering. 

The Chu-Stratton integrals for the total electric and 
magnetic fields scattered from an object can be very 
difficult to solve explicitly. High frequency techniques 
have been developed for solving these integrals. One 
such technique, Physical Optics (PO) is an approach that 
is based upon source currents. PO is valid for cases where 
the incident wavelength is much smaller than the length 
of the object that is scattering the energy. In PO theory, 
the geometry of the object becomes very important in 
calculating the total scattered electric and magnetic 
fields. PO uses the integral equation representation for 
the scattered fields. It also uses the high frequency 
assumption that the scattered field from one point on an 
object to any other point is negligible compared to the 
incident field. Therefore the total field at each point on 
the surface of the object is approximately equal to the 
incident field at that point. The scattered field is now 
reduced to a much simpler equation. The surface current 
density for PO is defined by: 

J = 2(hxHmc) 

J = surface current density 

h = surface or facet unit normal 
Hmc = incident field 

RadBase solves the physical optics integral equations to 
compute the RCS and Amplitude and Phase for complex 
objects. Beyond the PO treatment, RadBase has 
incorporated the following: 

• Edge Diffraction Effects 
• Blocking 
• Multiple Bounces 
• Polarization   Dependent   Scattering   (W,   HH) 

(Cross   polarization   will   be   available  with 
Release 1.1, Third Quarter, 1999) 

• Traveling and Creeping Waves 

RadBase INPUT 
A RadBase session begins with the main menu being 

presented to the user. Figure 1-1 presents a sample of the 
RadBase main menu. 

-.>r-*7" 

IKK£. fallen Cor I 
HBWHi 

••• 

Objects 
• 

Mri -• ^T*fT^*l*i*\ 
oo<J1 ^^J     ^^W 
gritl t£ Mil      jTrTfr.— • 

Ibumpl "T1"/ -^^     ilpH^^i 
nootll \S*                           TijiJJfcjSr 
Mm ^& 
rwtn1 

1 nxm 
1 twtnl 

lunKi 
roumnl 
boti —1 

1 tirnbM 
| tinrfti li 
| Load Lisl 

Figure 1-1. RadBase Main GUI 

RadBase requires as input: 
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1.   3-D wireframe model of the object 

Figure 3-2. Wireframe Model of a Missile 

2.   User   defined   radar,   geometry   and   option 
parameters 

User Defined Parameters 
Under the "Setup" menu, the user chooses the type of run 
to be performed: 

• Custom 

• RadarWorks• (RadarWorks is a trademark of 
MultiGen-Paradigm, Inc.) 

• STK•   (STK   is   a   trademark   of  Analytical 
Graphics, Inc.) 

Custom Setup 

RadBase requires specific radar, geometry and option 
parameters in order to develop the output RCS and 
Amplitude & Phase databases. Figure 1-3 presents the 
RadBase "Setup Custom" panel. 

Figure 1-3. RadBase Custom Setup Window 

The user defined input parameters are: 

•    Target ID 
The Target ID is an integer value placed in the 
header of the output files. This is useful for 
simulation systems that contain many targets, 
allowing the system to uniquely identify each target 
and assign the proper RCS data. 

• Blocking Options (None, Low, Medium, High) 
The speed of RadBase is dependent upon the number 
of object facets, the number of bounces, and how 
many blocking computations are desired. Blocking 
refers to one facet of the vehicle blocking another 
facet from the radar view. If an object is fairly simple 
and has no facets that can block another, than it is 
recommended that the user input "None". If the 
object is very complex and has many facets that can 
block other facets, the user should input "High". The 
remaining two options are for intermediate objects. 
This is truly a subjective input by the user and for the 
best "physics" treatment, the user should use "High" 
if unsure. 

• Output Option: Binary or ASCII 
The output database can be either binary or ascii. 

• Edge Diffraction (Yes/No) 
Edge effects can have a significant effect on the RCS 
of a complex object. RadBase includes edge 
diffraction effects coupled with the physical optics 
computations. RadBase is delivered with a routine 
that automatically generates object edges. It uses the 
information in the vertex and facet file to generate 
these edges. If edge diffraction is chosen, RadEdge 
generates edge information that is passed directly 
into the RadBase edge diffraction routine. 

• Maximum Interior Wedge Angle (MIWA) (Degrees) 
The maximum interior wedge angle defines the 
maximum angle at which two facets form an edge. 
Angles greater than this angle are not included in 
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•     Bounces 
This option gives the user the ability to control the 
number of multiple bounces off of the object that the 
radar beam can undergo before returning to the 
receiver. Currently, up to two bounces is allowed, 
however, Release 2.0 will allow the user to go to #i 
bounces. 

the edge computations. This prevents inclusion of 
edges in which the interior angle is close to 180°. 
The default value for this parameter is 100°. It is 
recommended that the user choose values between 
100° and 170°. The limits are: 

90° < MIWA < 180° 
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Frequencies (GHz) (1-100 GHz) 
> Uniform Frequencies (Begin, End, Step) 

The user can input a begin, end, and step 
frequency. The uniform frequency option is 
useful for generating RCS and Amplitude and 
Phase data to be used in a SAR processor, or if a 
known desired frequency spacing is desired. The 
maximum number of frequencies is 100. 

> Discrete Frequencies 
The user can input up to one hundred (100) 
discrete frequencies in any given RadBase run. 

Elevation Angles (Begin, End, Step) 
The elevation angles must be input in degrees. The 
range of angles is from 0° to 360°. 0° - 180° defines 
the upper hemisphere and 180° - 360° defines the 
lower hemisphere. The maximum number of 
elevation angles is 2001. 

r - -     r * •we* 
|or 

Utra 
fr«q>i0 0 poNw nmum mgtft«0 0 

M I 

» 

1. i b L [A «v 

I 

•j, 
</ s Ml w 0 1f jy nf IT 

~0          10         30         30         40         SO         BO         70         M         M        1 

BMMRM0I 

•     Azimuth Angles (Begin, End, Step) 
The azimuth angles must be input in degrees. The 
range of angles is from 0° to 360°. Rotation is 
defined as counter-clockwise for an observer sitting 
above the target. Thus, if the nose of the aircraft 
points down the positive x-axis, 90° is viewing the 
left wing as defined by the pilot and 270° is viewing 
the right wing. The maximum number of azimuth 
angles is 2001. 

RadBase OUTPUT 

RadBase outputs two binary or ascii files. The prefix of 
the input file is used for output. For example, if the file, 
"barn.flt" is input, the two output files will be named, 
"bam.rcs" and "barn.aph". The .res file contains RCS 
data for all user-defined frequencies, two linear 
polarizations and all user defined elevation and azimuth 
angles. The .aph file contains amplitude and phase data 
for all user-defined frequencies, two linear polarizations 
and all user defined elevation and azimuth angles. Figure 
1-4 presents an RCS versus elevation angle plot 
generated by RadBase. 

Figure 1-4. RCS vs. Elevation Angle Plot Generated 

by RadBase 

VALIDATION 

RadBase has been validated against range measurements 
of an aircraft. Figure 1-5 presents an image of the aircraft 
measured in the radar range and Figure 1-6 presents an 
image of the modeled aircraft. 

Figure 1-5. True Figure 1-6. Modeled 

Figures 1-7 through 1-10 present plots of the RadBase 
predicted RCS versus the measured data. It can be seen 
that RadBase compares extremely well with the measured 
data. The discrepancies beyond 300° for the 10 GHz and 
15 GHz, 30° elevation cases are due to the fact that 
RadBase does not yet treat cavities or calculate more than 
two bounces. Release 2.0, scheduled for Fourth Quarter, 
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1999 will have a treatment for cavities as well as include 
a robust model for calculating the RCS for any user- 
specified number of bounces. 
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Figure 1-10. Measured vs RadBase Modeled Aircraft 
15 GHz; HH; 30° Elevation 

Surface Optics is further validating RadBase against 
range measurements of a T72. Preliminary results show 
that RadBase is agreeing extremely well with the 
measured data. The T72 validation report will be 
available to the public September 1999. 

10 GHz; W; Elevation = 30 Degrees 
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Figure 1-7. Measured vs RadBase Modeled Aircraft 
5 GHz; W; 42° Elevation 

Figure 1-8. Measured vs RadBase Modeled Aircraft 
5 GHz; HH; 42° Elevation 

Figure 1-9. Measured vs RadBase Modeled Aircraft 
10 GHz; W; 30° Elevation 

COMPARISON WITH Xpatch 
RadBase has been compared to the radar scattering 
software package, Xpatch. Xpatch is a set of high- 
frequency radar signature prediction codes that are based 
on a method called the Shooting & Bouncing Ray (SBR) 
technique. Xpatch was chosen for this study because it 
has been well validated and documented. 

Figure 1-11 presents a three dimensional image of a Scud 
Launcher used as input into RadBase and Xpatch. 
Figures 1-12 and 1-13 present comparisons of RadBase 
and Xpatch for the Scud Launcher. The figures show that 
RadBase compares extremely well with Xpatch, and the 
two produce almost exact results at the major peaks (0°, 
76 °, 90 ° and 180 °). Figure 1-14 presents a comparison 
of RadBase and Xpatch for a faceted missile. Again, the 
two software systems produce very comparable results. 

These results are only a small sample from a complete 
RadBase/Xpatch study performed by Surface Optics. 

36 



10 GHz; 2=30°; W 

Figure 1-12. RadBase/Xpatch Comparison for a Scud 
Launcher -10 GHz; 2=30°; W 
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10 GHz; 2=30°; HH 
Figure 1-13. RadBase/Xpatch Comparison for a Scud 
Launcher - 10 GHz; 2=30°; HH 

10GHz;M=0°;W 
Figure   1-14.   RadBase/Xpatch   Comparison   for   a 
Faceted Missile - 10 GHz; M=0°; W 

APPLICATIONS 
RadBase has applications in many areas of radar 
research, design and simulation. It is currently being 
used by radar design engineers, radar experts in the real- 
time visual simulation/sensor simulation community, and 
scientists performing Synthetic Aperture Radar (SAR) 
image interpretation and simulation. 

Figure 1-11. Scud Launcher used for RadBase/Xpatch 
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Comparison 

RadBase gives the user the ability to generate radar 
databases for a variety of applications: 

Radar Simulation 

Target Signature Analysis 

Radar System Analysis 

Radar System Performance 

Radar Design 

SAR Image Interpretation 

Human Factor Studies 

Radar Operator Training 

Input to other COTS Products 
> STK/Radar• 

> RadarWorks• 
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CONCLUSIONS 
RadBase is a user-friendly software product for 
generating accurate Radar Cross Section (RCS) and 
Amplitude and Phase data for complex targets and 
cultural features as a function of frequency, polarization, 
incident angle and azimuth angle. It allows labs to 
produce radar simulation data on every PC available 
within their facility. Previously, this was only possible 
using their handful of very expensive UNIX platforms. 

FUTURE ENHANCEMENTS 
RadBase will advance significantly with new releases. 
Upgrades will include: 

• Target Viewer/Material Editor 

> The user will be able to view a 3-D object, point 
and click on individual facets or groups of facets 
and easily make materials assignments (with no 
typing required) 

> RadBase will be delivered with a complete set of 
complex dielectric properties databases 

Q    Developed at SOC 

•    Continually enhanced by SOC 

• Higher Order Bounces (>2) 

• Ability to handle a rough surface ground plane 

• Treatment of Cavities 

RadBase has been validated against range measurements 
and been compared extensively to validated radar 
scattering software packages such as Xpatch. RadBase 
will continue to advance significantly with new releases. 
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ABSTRACT 

Irma is an Air Force sponsored tool for generating 
synthetic signatures and imagery of complex 
environments for a wide variety of different sensors and 
spectral bands. The Irma code has three main 
signature/sensor components consisting of the passive, 
ladar, and radar models. These models allow a sensor to 
view a complex scene consisting of targets, terrain, and 
atmosphere. There is essentially no limitation on the 
placement of the sensor or the geometrical complexity of 
the scene. The passive code accounts for reflected 
sky/solar/earth radiation, emitted radiation and 
atmospheric transmittance and path radiance to produce 
radiance (or apparent temperature) imagery. The ladar 
code accounts for monostatic surface scattering, 
atmospheric effects and sensor motion to produce range 
and cross section imagery. The radar code accounts for 
spatially coherent and incoherent scattering, atmospheric 
transmittance and volumetric backscatter and is designed 
to produce synthetic aperture radar (SAR) and realbeam 
radar imagery, pulse-doppler maps, and range-resolved 
cross sections. This paper will focus on the radar model, 
the associated phenomenology and example signatures, 
and the recently added pulse-doppler and range-resolved 
cross section capabilities. 

INTRODUCTION 

Irma is a mature multi-sensor signature prediction code 
and analysis tool [1]. The purpose of the Irma radar 
channel is to generate signatures of target and terrain 
scenes viewed with a radar sensor [2]. The generated 
radar signatures typically represent the radar cross 
section (RCS), or some related quantity, as a function of 
various (range, doppler, cross-range) coordinates. 

The radar model currently has three main types of output 
signatures'. SAR imagery, pulse-doppler maps, and range 
resolved cross sections. In the SAR mode, the output 
signature is given as a function of down-range and cross- 
range coordinates. In the pulse-doppler mode, the return 
signal power in each range doppler cell is computed. 
This mode was designed for modeling air-to-air 
engagements. The code can also output a complex range- 
resolved return signal where the output is proportional to 
the square root of the RCS in each range bin. These 
range profiles are characteristic of air-to-surface real- 
beam radar systems. 

The signature generation process utilized in the Irma 
code consists of several different steps. First, it is 
necessary to describe the scene. The scene is described by 
specifying the location and orientation of all scene 
features and objects and their scattering properties. Next, 
the sensor is described by its position, orientation, 
frequency, resolution, antenna pattern and polarization. 
The code then determines which objects within the scene 
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are illuminated by the sensor. In this stage, oversampling 
on selected objects may be utilized to provide a high- 
resolution description of the sampled geometry. The 
radar signature is then determined utilizing a 
combination of spatially coherent and incoherent 
techniques. Furthermore, the simulation may utilize a 
single bounce Z-buffer approximation [3] or, in some 
cases, the XpatchT [4] module may be used to generate 
signatures of objects containing multiple bounce 
components. Also, the model accounts for the sensor blur 
and speckle effects as well as atmospheric attenuation 
and backscatter. 

The Irma model is written in FORTRAN and C and is 
supported on both the SUN (Solaris 2.5 or later) and SGI 
(Irix 6.2 or later) platforms. In addition to these 
platforms, the radar module, as outlined in this paper, is 
in the process of being ported to the PC/Windows NT 
platform. The Irma software is available free of charge to 
US government-approved personnel. 

SAR MODELING ENHANCEMENTS 

A SAR image is a graphical display of the radar cross 
section (or some similar quantity) as a function of down- 
range and cross-range coordinates. Objects that appear 
bright in the scene are scattering a relatively large 
portion of the incident electromagnetic energy back 
toward the sensor. Surfaces that are highly reflective will 
appear bright when oriented perpendicularly to the 
sensor line of sight. Smooth objects that lie flat in the 
scene, such as roads and water regions, will generally 
appear dark since they scatter the incident energy in the 
specular direction away from the sensor. The down range 
resolution is controlled by the bandwidth (effective pulse 
width) of the radar. The cross-range resolution for real 
beam imagery is dependent on the beamwidth and range. 
For synthetic aperture systems, the cross range resolution 
is dependent on the mode of operation and effectively 
how long the sensor views the scene. With Irma, a 
variety of resolution functions (sine, Hann, Gaussian, 
etc.) are supported. These functions may be used to 
control the resolution and sidelobe effects. Shown in 
Figure 1 is a SAR image of a rural scene containing 
fields, a road, trees, and several tanks. 

Figure 1. SAR Image of rural scene containing a road, 
fields, trees, and several tanks. 

In addition to the standard imagery that is produced by 
Irma, output SAR imagery for a set of amplitude 
monopulse antenna patterns can also be generated. When 
in this mode, the code utilizes a user-supplied sum 
antenna pattern, a delta-azimuth pattern, and a delta- 
elevation pattern. An example of these patterns is shown 
in Figure 2. The resulting images, such as those shown in 
Figure 3, can be utilized to determine the angular 
position of a target within the scene. 

(a) (b) 

Figure 2. Monopulse (a) sum  and (b) delta-azimuth 
pattern. 
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Figure 3. Example monopulse SAR images (a) sum 
pattern, (b) delta-azimuth pattern. 

An important upgrade to the radar channel is the ability 
to make use of external SAR interpolation tables. Prior 
to this enhancement, the radar code had the ability to 
incorporate SAR signatures that were obtained by 
external means such as Xpatch or possibly even from 
measurements. However, this was only valid for a given 
target aspect. If a sequence of images was to be 
generated which involved a changing target or sensor 
position, it was necessary to generate the target chips one 
at a time and manually change the external SAR images 
each time. 

For illustration purposes, a set of SAR images of a tank, 
shown in Figure 4, was generated using the Xpatch code 
for several different azimuth angles. The elevation was 
held constant at 24°. A subset of the data is displayed on 
a linear scale in Figure 5 with the image minimum and 
maximum mapped to black and white, respectively. 

Figure 4. T72 facet model. 

(g) 0>) (>) 

Figure 5. Synthetic Aperture Radar Images of a T72 tank 
target as viewed from a 24° elevation. The Ka Band 
sensor aspects are (a) 0° (b) 10° (c) 20° (d) 30° (e) 40° 
(f) 50° (g) 60° (h) 70° (i) 80°. 

The radar code now has the capability to read in a 
database of filenames which correspond to a number of 
externally generated SAR images for a number of 
different aspect angles. Then during the signature 
calculation, the code determines the appropriate aspect 
angles of the sensor in the base coordinate system of each 
target. This location is then used to find the four 
surrounding images in the database. These images are 
utilized to obtain a new external image which is then 
used for the current target. The user also has the 
capability to scale the image to represent some desired 
cross section as an aid in performing parametric studies. 

The use of the interpolation table is faster and much less 
prone to error than manually updating the external file. 
Furthermore, it is much more practical than attempting 
to call Xpatch each time to generate an image which may 
take several hours to calculate. However, it is necessary 
to generate the database of images offline, which will be 
a time consuming task. An example of the process is 
shown in Figure 6. Here, the signature is desired at an 
aspect of 6 = 73°, <(» = -36°. The table contains signatures 
for every 5° in elevation and every 10° in azimuth. The 
surrounding pre-calculated images at 8 = 70° and 75° , 
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<t> = -40° and -30° are then used to obtain an image at the 
desired aspect. 

View of Tank from 
6 = 73°, d> = -36° 

6 = 75°, * = -40° 9 = 75°, 4> = -30° 

Figure 6. Example of external SAR image interpolation. 

For demonstration purposes, an example of incorporating 
an XpatchT result into Irma is shown in Figure 7. The 
frequency was set to 35 GHz, the sensor is located at 
6 = 70° and <t> = 90°, and only one bounce is used. The 
external SAR image was obtained from an XpatchT run. 
This was then incorporated as the top tank in the final 
image. For comparison, the bottom tank in the image 
was calculated by Irma with target oversampling. 

External SAR 

lima SAR Image Final Image 

Figure 7. Demonstration of the process of incorporating 
an external SAR image into Irma. The external Ka Band 
SAR image of a tank was computed by XpatchT. The 
lower tank image was computed by Irma. 

PULSE-DOPPLER AND RANGE PROFILE 
ENHANCEMENTS 

In addition to the SAR modeling capabilities of Irma, the 
radar channel also has both pulse-doppler and range- 
profile sensor capabilities. The primary purpose of the 
pulse-doppler mode is for modeling air-to-air 
engagements. As in the SAR mode, the targets and 
clutter features are described by specifying their location, 
orientation, and scattering properties. In addition to these 
properties, the velocity (translational and rotational) of 
all moving targets is specified. The sensor is specified by 
its position, orientation, frequency, resolution, antenna 
pattern, noise characteristics, and translational velocity. 
The imaging scenario is illustrated in Figure 8. 

s- 
Wlocity 

Freaaeacy 

Raafe 

Ground Clatter 

Figure 8. Range-doppler modeling scenario. 

The range-doppler maps are created by first rendering 
the scene. The range to each pixel is determined along 
with its relative radial velocity with respect to the sensor. 
These two quantities determine where the signature will 
get mapped in the radar image. The received power is 
then determined using the radar range equation and 
accounts for the range to the target, the pattern, gain, and 
polarization of the sensor, atmospheric and other loss 
factors. The primary output of this sensor mode is a 
range-doppler image or map where the values in this 
map represent the received signal power. For illustration 
purposes, a pulse-doppler map is shown in Figure 9 and 
contains target, clutter, and noise effects. 
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Figure 9. Pulse-doppler image of a scene containing both 
a target and clutter. 

The intended purpose of the range-profile capability in 
Irma is to model air-to-ground radar guidance and 
fuzing. In a fuzing scenario, a sensor guides a weapon to 
the target, and a proximity fuze detonates an explosive 
warhead when the weapon reaches the planned position, 
range, or altitude with respect to the target. As the 
munition closes on the target, a range is reached at which 
far-field scattering conditions no longer apply. In the 
near-field region, the phase of the incident field is no 
longer planar, the range is not constant over the target, 
and the antenna pattern varies over the target scene. As 
the sensor transitions from the far-field region to the 
near-field region, the peak RCS is typically reduced, the 
nulls are not as deep and the sidelobes are higher. 

In performing the fuze calculations, as with the pulse- 
doppler computations, the sensor is modeled with an 
arbitrary antenna pattern. This pattern is described by 
the magnitude and phase of the £e and £+ components of 
the electric field radiation pattern as a function of 8 and <t> 
in the antenna's local coordinate system. 

For illustration purposes, a synthetic range profile of a 
simple target on a grass background is shown in Figure 
10. In this scenario, the Ka-band sensor is positioned 
50 m from the target at an elevation of 30°. 

Title: 

Creator. 
pearps 
Preview: 
This EPS picture was not saved 
with a preview included in it 
Comment 
This EPS picture will print to a 
PostScript printer, but not to 
other types of printers. 

Figure 10. Synthetic range profile produced by Irma. 

SUMMARY 

Irma is a mature multi-sensor signature prediction code. 
This paper has outlined the status of the Irma radar 
module with its recent enhancements and presented 
example SAR imagery, pulse-doppler maps and range 
profile signatures. These results serve to demonstrate the 
wide range of scenarios for which Irma can be utilized. 
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ABSTRACT 

Mechanical Desktop, a solid modeling program from 
AutoDesk, offers engineers a powerful environment for 
designing ground combat vehicles. To predict the radar 
signatures of concept vehicles created in Mechanical 
Desktop, the geometry and material properties of the 
vehicles must be fed into Xpatch. Mechanical Desktop, 
however, lacks an output file format that is directly 
useable by Xpatch. In this paper, we discuss the problems 
associated with converting Mechanical Desktop files into 
a suitable facet format, and we present a procedure for 
carrying out the conversion. Moreover, we describe new 
software required to perform a key step in this conversion. 
The conversion of an example of Mechanical Desktop 
solid models illustrates the procedure and the new 
software. 

INTRODUCTION 

At the U.S. Army Tank-automotive and Armaments 
Command (TACOM), engineers in our team use the 
commercial computer aided design (CAD) program 
Mechanical Desktop to design ground vehicles as 3 
dimensional solids. Mechanical Desktop, a product of 
AutoDesk, offers the vehicle designer a host of features to 
facilitate the design process and to produce useful output. 
For example, Mechanical Desktop can transform a solid 
model into a fully dimensioned AutoCAD drawing for use 
in the machine shop. 

If we could use this geometric description to predict a 
vehicle's radar signature with Xpatch, then we could 
avoid the time and labor required to duplicate manually 
the description of the vehicle. Moreover, using the same 
geometry description would ensure precise configuration 
control. Mechanical Desktop, however, does not produce 
a geometry file that can be fed directly into Xpatch to 
predict radar signatures. 

In this paper, we present a procedure to solve this 
problem by using a combination of commercial and 
custom software to convert Mechanical Desktop output 
files into facet files for input to Xpatch. 

CONVERSION PROCESS 

Figure 1 illustrates the overall relationship of the 
programs involved in the conversion process. First, 
Mechanical Desktop creates the vehicle geometry and 
exports it as an IGES file. The commercial program 
Rhino imports the IGES file and exports it as an OBJ file. 
And, finally, the custom program OBJ to Facet Converter 
creates the facet file suitable for input to Xpatch. 

Rhino, a product of Robert McNeel and Associates 
(www.rhino3d.com), specializes in the creation of 3 
dimensional objects represented as non-uniform rational 
B-splines (NURBS). But we chose Rhino for this 
conversion process because it supports a wide range of 
input and output formats. 

Roger Evans wrote the OBJ to Facet Converter, the other 
key program in the conversion process, in C and Borland 
C++Builder to run under Windows. The program can be 
either command line driven or launched from a Windows 
graphical user interface. Computer memory sets the only 
limit on the size of the files that can be converted. 

To handle the assignment of material codes, the user must 
split a vehicle into separate files for each material. Figure 
2 illustrates the process of converting the separate files 
and recombining them into an Xpatch vehicle file. 
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DTANK: AN EXAMPLE OF THE 
CONVERSION PROCESS 

The conversion of DTANK, an example geometry, 
highlights the features of the conversion process. Figure 3 
shows DTANK in Mechanical Desktop, where Dr. David 
Hansen created the geometry for mis paper. The name 
derives from David's Tank. The colors of DTANK 
represent different materials, each of which will be 
converted separately. From Mechanical Desktop, 
DTANK is exported as IGES files. 

In Figure 4, Rhino displays DTANK after the IGES files 
have been imported. At this point, DTANK is still 
represented as solid objects. To export the DTANK files 
as OBJ files, the user can control meshing with a simple 
slider, Figure 5, or the user can choose detailed meshing 
parameters, Figure 6. The meshing parameters can have 
major effects on the number and shape of the facets. For 
example, the result of selecting different values for the 
Max. Angle meshing parameter is displayed in Figure 7. 

The next step is to run OBJ to Facet Converter, Figure 8. 
Note that the user has the option to assign an Xpatch 
material number to the entire file. A dialog box, Figure 9, 
reports on the results of the conversion. 

The separate material facet files must now be combined 
into a single vehicle file. The files can be combined either 
in one step by the Combiner program written for this 
paper, or the files can be combined in several steps, two 
files at time, by the file combining program packaged 
with Xpatch. The result of the combining is a single 
vehicle facet file with components labeled with the proper 
Xpatch material number, Figure 10. 

The file is now ready for input to Xpatch. Figure 11 
shows a synthetic aperture radar image of DTANK 
generated by Xpatch from the converted file. 

CONCLUSIONS 

The process described here can convert geometries 
created in Mechanical Desktop into Xpatch compatible 
facet files. Presumably, this same process could be 
applied to IGES geometry files created by other CAD 
programs. 
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Future improvements might include removing internal 
facets. Additionally, better techniques are needed to deal 
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45 



Conversion of Files 
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Figure 1. The process of converting a file from Mechanical Desktop to Xpatch. 

Material Properties 

Figure 2. Parallel conversion of components of different materials. 
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Figure 3. DTANK in Mechanical Desktop. 

Figure 4. DTANK imported into Rhino. 
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Export File as OBJ File 
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Figure 5. Simple control of meshing parameters for OBJ file. 
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Figure 6. Detailed control of meshing parameters for OBJ file. 
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Roadwheel Meshed With 
Max. Angle Set at 20 and 40 
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Figure 7. The result of 2 values of the Max. Angle meshing parameter. 
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Run OBJ To Facet Converter 
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Figure 8. Dialog box to run the OBJ to Facet Converter. 

Results of Conversion 

Figure 9. Report on the results of an OBJ to Facet conversion. 
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Material Facet Files Combined 
 Into a Single Vehicle File  
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Figure 10. The converted vehicle facet file displayed in Xpatch's viewer. 

Synthetic Aperture Radar 
Image Predicted by Xpatch 

Figure 11. Output from Xpatch generated from the converted vehicle file. 
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ABSTRACT 

In analysis efforts this author has participated in 
over the last few years, over 60 percent of total effort was 
spent on the production of a reasonable and accurate mesh 
for analysis. A comparison (production times and electro- 
magnetics) of fast automeshing triangles (higher element 
counts and longer analysis run times) with reduced 
element count models using additional primitives (longer 
mesh preparation time and reduced analysis run times) 
would be of interest. The target will be a truncated 
pyramid with quarter wavelength cracks, fastener bumps 
and weld beads. The approach involves first, an automesh 
using only triangular elements, and second is a semi- 
automated mesh using quadrangles, cylinders, cones, 
elliptical plates, ellipsoids and paraboloids as well. The 
analysis, accomplished using NRL's Radar Target 
Signature (RTS), is comprised of full azimuthal runs at 
two elevations in a free space calculation at a frequency in 
the millimeter wave region. Mesh generation times and 
analysis run times will be compared to determine total 
production time tradeoffs. The key questions are: will the 
use of additional primitives be faster and if so, are the 
results   comparable? If  this   investigation   yields 
significant results the next question would be, can these 
results be scaled to full size vehicle targets on the 100,000 
to 1,000,000 element range? 

INTRODUCTION 

Creation of a suitable closed surface model from 
CAD models employing combinational solid geometry 
and parasolids is a time consuming task. Some of these 
models have a different primary purpose from that of 
observables. For example, determining space reservation 
and interference, as well as weights of modeled objects 
may help other design considerations, but they are excess 
baggage in observables analysis. Geometric entities do 
not always have concise intersections and intersection 
edges have to be derived, sometimes with great difficulty. 

Observables Analysis is concerned with the 
exterior surface only. For example, (RTS) requires closed 
surface geometry defined by points in 3 dimensions and 
elements defined by these points. The process was 
initially refined about five years ago with the 
development of Pre-RTS, a CAD (really Finite Element) 
to POLY file (RTS Input file) geometry translator. It 
takes a PATRAN Neutral File and produces a 
POLY.DAT file. Naval Sea Systems Command uses 
Intergraph's Finite Element Modeler (I/FEM) to produce 
a PATRAN Neutral File. Standard practice was to create 
mesh, because much source geometry was just a wire 
frame definition and the desired output was a finite 
element mesh. Because there was no need to create a 
CAD Model only the geometry needed to create a mesh 
was constructed. However, this process is very time 
consuming so faster, more accurate approaches are always 
being investigated and implemented into the modeling 
process. Final validity in the X-Windows Radar Analysis 
Tool (XRAT) and the successful completion of XPT and 
TDI (two preparation modules of RTS) are the driving 
factors. 

When RHINOCEROS (RHINO), a Non- 
Uniform Rational B-Spline (NURBS) modeling 
environment, with a user-friendly fast automesher, which 
uses tri and quad elements, was proposed as a way to 
automate the process because it had a more versitile IGES 
geometry interpreter, it was decided that its use in the 
process should be investigated The following sections 
are a description of the modeling and analysis process 
with a final section of observations on the pros and cons 
of each approach. 
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MODELING 

Figure 1 

The basic model, shown in Figure 1, started as a 
rectangular cube. The sides were trimmed to be 20 
degrees positively sloped, or so their surface normals 
were 20 degrees above the horizon. The rear face was 
sloped positively 10 degrees and the front face was sloped 
30 degrees. The cube was then trimmed again to round off 
three of the top edges (sides and back). 

A mismatch resulted at the rear comers because 
the sides and back had different slopes. Consequently, 
the trimming of the back top edge had a longer arc length 
than the sides, introducing a splinter triangle element to 
make up the difference (the gray highlighted element as 
shown in Figure 2.) and leading to meshing errors with 
the auto mesh. 

In the interests of time a compromise was done. 
The side arcs redefined the back surfaces and the side flat 
faces include the splinter in a new larger quad This 
example shows that, even with the latest methods of 
automatically extracting surfaces and automeshing, the 
underlying CAD geometry sometimes needs to be fixed. 
This raises the question of how much one can trust these 
automatic methods. 

Four different types of hatch entities were added 
to the model. In clockwise order starting at the lower left 
in Figure 3: a stand-off door with a quarter wave length 
stand-off crack, a raised door with a double curved 
conforming edge, a depressed door with a single curved 
edge, and a conformal door with a quarter wave length 
wide and deep gap. Next the front face was then extended 
to include two polygonal entities, the left one with both 
positively and negatively sloped sides and the right one 
with just negatively sloped sides. The new front face did 
not have a rounded top edge. Fastener features were then 
added in three sizes; quarter, half and full wavelength and 
two major types; hemi-spherical, and conical. Finally 
there were two weld bead entities, one with a half circle 
cross section and the other a flatter arc where the length 
of the mid-radius is half that of the end points. 

Figure 3 

Two view port shapes were then added to the 
front of the model as shown in Figure 4. Additional 
horizontal surfaces were added to the bottom edge to 
replicate interaction of the model with the ground on 
which it sits. 

Figure 2. 
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Figure 4 

A traditional Finite Element Model was then 
produced in I/FEM using additional primitives, partial 
cylinders and cones. A PATRAN neutral file was output 
from I/FEM. Pre-RTS checked and translated into a 
POLY.DAT file. Finally, it was checked in RTS by XPT 
and TDI modules, multibounce sequences were generated 
by Multi-Scatterer Generator (MSG) and analyzed by 
SCP modules in full azimuth cuts at 32, and 60 degree 
elevations. 

While the first model was undergoing analysis, 
the second model was being produced. An IGES model 
was first exported to RHINO. All the surface entities 
were men joined together to make a complete closed 
surface. This was meshed and exported as a Virtual 
Reality Modeling Language (VRML) model. This 
VRML model was translated into a PATRAN Neutral File 
and brought back into I/FEM to check for validity. Of 
note, the automeshed model was found to have a few 
problems. First, the initial mesh density was too high 
causing the creation of numerous splinter shaped tri 
elements. Second, even though RHINO seemed to handle 
the surface geometry as one complete surface when it was 
meshed, there were duplicate nodes at surface entity 
edges. After several attempts at lowering the mesh 
density, only one splinter tri remained which was 
remeshed manually. 

Taking all things into account, the use of 
RHINO to create the mesh was faster and easier. There is 
somewhat of a learning curve, but far less than with most 
CAD or 3D drawing packages. It is by no means a FEM 
environment, but it is so fast that doing things over 
doesn't take long. In the final analysis, automeshing has 
gotten smart enough to be faster and more efficient than 
manual meshing methods. 

ANALYSIS 

The analysis phase is where the advantages of 
additional elements supported by RTS begins to pay off. 
RTS is made up of several modules divided into three 

groups: target file preparation, signature calculation and 
post processing. Even with a valid geometry definition, 
there is still a great deal of runtime before any 
calculations can be done. The multi-bounce scatterers 
must be determined using the MSG module. On full-scale 
models this can take weeks of runtime. The advent of fast 
workstations has reduced mis somewhat, but RTS is 
always trying to reduce runtime. It is a central feature of 
its design. Comparison between the two models 
demonstrate this in Table 1: 

Model Type Manual Mesh Auto Mesh 
Element Count 437 5689 
Max Freq. 100 Ghz 100 Ghz 
Threshold -80dBsm -30dBsm 
# of Bounces 17 8 
MB Scatterers 41812 65422 
MSG Runtime 14.5 hours 1.1 hours 

Table 1 

There seems to be a vast difference in runtimes 
but the automeshed model ran for several hours with a 
threshold of-50 dBsm and did not even get through three 
bounces, an indication that lowering the threshold would 
make the MSG runtime too long. So it was raised back to 
-30 dBsm for this analysis. The manually meshed model 
ran through several MSG calculations in a matter of 
minutes. This final run was left to run overnight for the 
evaluation of 17 bounces. Note that the multi-bounce 
sequence counts are about the same magnitude. 

Results are comparable in that the peaks overlay 
quite well and the mean and median values are well 
within acceptable limits of each other. There are 
additional peaks in the automeshed model probably 
caused by the facetization of the curved top edges. The 
manual meshed model seemed to have lower troughs 
between the peaks. 

The  Signature  Calculation 
follows: 

Process   Runtime  Table 

Model Type Manual Mesh Auto Mesh 
1800 calc points 278.35 sec 1294.29 sec 
450 calc points 80.2 sec 330.21 sec 

Table 2 

These runtimes indicate the advantage of using 
additional primatives in RTS. Both types of models were 
completed in a matter of minutes, and have been 
demonstrated to be scalable using RTS primatives. A 90k 
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viewable element model with an 8 bounce sequence file 
completed a single elevation 360 degree azimuth in less 
than 18 hours or overnight on a single processor DEC 
Alpha PC. If fester times are required, multiple machines 
could be used and the runtimes reduced accordingly. 
Additional processors could be used to make the 
automesh models useful too, but the process would be 
slower than analysis of a manual meshed model. 

SUMMARY 

The results indicate that although automeshing is 
a fester method to create a valid closed surface mesh, the 
increases in analysis runtime do not balance out the saved 
time. Also, there are trade-offs: more care must be taken 
to ensure that the surface to be automeshed is correct, that 
no cracks or discontinuities exist, that it is all joined 
together properly, and duplicate nodes removed. 
Automeshing may be practical for a small object or group 
of objects, but scalability for larger, more complex 
models does not seem to be practical. The resulting 
increase in element count automeshing incurs increases 
run times for MSG and SCP modules of RTS, making the 
use of automeshing to support design impractical. 

Manually meshed models still enjoy the 
advantage of keeping element counts low. With the 
development of addtional primitives like 6 and 8 noded 
doubly curved elements, RTS should be able to handle 
rapid analysis in support of the design process. RTS is 
continuously enhancing its capabilities, particularly in the 
area of analysis. The upcoming ability to display results 
as real color levels on displayed models in XRAT is due 
in the next release. Work is ongoing to include cylinders 
and cones in multibounce sequences. 
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ABSTRACT 

In the production of CAD models suitable for 
computational electromagnetics analysis, it is important to 
determine the required level-of-detail (LOD) and level-of- 
resolution (LOR) of the models for accurate signature 
synthesis. To help determine these requirements for high- 
frequency analysis, models of five ground targets were 
generated with varying levels of detail and resolution. 
Synthetic images were produced at numerous elevation 
and azimuth angles from scattering centers and were then 
compared to measured SAR images using an automated, 
quantitative image comparison technique that includes 
image segmentation, resampling, scaling, and filtering. 
Error metrics are presented for a variety of cases, and a 
simple ATR application is also shown for the varying 
LODs and LORs 

At lower frequencies, the Fast Illinois Solver Code 
(FISC), an industrial-strength code that employs the 
method of moments and the Multilevel Fast-Multipole 
Algorithm (MLFMA), was used to solve the scattering 
problem for complex targets with up to hundreds of 
thousands of unknowns. The characterization of complex 
ground targets for various LOD's using FISC at 
frequencies of 1 GHz and below will be presented. Insight 
into FISC and the use of the MLFMA for geometries with 
larger numbers of unknowns will be provided. 

INTRODUCTION 

Science Applications International Corporation (SAIC) 
supports the Virtual Target Program with the 
development and characterization of physically realistic 
computer-aided design (CAD) models, or virtual targets. 
The program is sponsored by the U.S. Army Simulation, 
Training and Instrumentation Command (STRICOM), 
Program Manager for Instrumentation, Targets & Threat 
Simulators (PM ITTS), Targets Management Office 
(TMO).   TMO   is   addressing   the   requirements   for 

simulation-based acquisition, test and evaluation, and 
training by producing virtual targets that possess enough 
fidelity to synthetically replicate the electromagnetic 
characteristics of real threat targets across a broad 
frequency spectrum. However, the question of "how 
much fidelity is enough?" has never been addressed. The 
required fidelity is dependent on a number factors to 
include the frequency of interest, required data resolution, 
and the simulation software used to generate the synthetic 
data. The study described here provided an initial 
assessment of the required virtual target fidelity for 
specific, but common applications that span the radio 
frequency (RF) spectrum from 150 MHz to 10 GHz [1]. 

BACKGROUND 

An important aspect of a weapon system assessment is its 
radar cross section (RCS). It has been demonstrated that 
accurate, cost effective RCS analysis can be performed on 
threat systems using high-fidelity CAD models and 
computational electromagnetic (CEM) codes to create 
synthetic radar signatures. To date, most of the emphasis 
has been placed on high-frequency signature analysis 
including frequencies in the S-band region or higher. 
However, an area of growing interest is the low-frequency 
(LF) response of these systems, which can vary 
significantly from the high-frequency response. 

Most CEM codes can be characterized as using either a 
"low-frequency" or "high-frequency" approach. In this 
context, low and high frequency refer to the electrical size 
(i.e., the size in wavelengths) of the object of interest. The 
CEM algorithms in these two regimes are quite different. 

For example, asymptotic techniques work well in the 
"high-frequency" regime where targets are electrically 
large. For these size targets the scattering mechanism is 
primarily a localized phenomenon where the induced 
currents at a given location are not significantly 
dependent on induced currents elsewhere on the target. 
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The resulting CEM solution, with methods such as the 
Physical Theory of Diffraction (PTD) and the 
Geometrical Theory of Diffraction (GTD), is thus 
decoupled. The required run time is more affected by the 
number of required aspect samples rather than by the 
number of frequency samples. 

Conversely, codes employing Method of Moments 
(MoM), Finite Element, Finite Volume, and other such 
algorithms provide "exact" solutions to the scattering 
problem but are typically limited by memory 
requirements and computation time. Therefore, these type 
codes are generally used for electrically smaller targets. 
Scattering from these size targets is primarily a global 
phenomenon where the induced currents at a given 
location can significantly depend on the induced currents 
elsewhere on the target. MoM techniques require the 
solution of coupled integro-differential equations where 
the required run time, in contrast to the high-frequency 
methods, is more affected by the number of required 
frequency samples than by the number of aspect samples. 

Facetization and level-of-resolution create even more 
distinction between "low-frequency" techniques and 
"high-frequency" techniques. For high-frequency 
analysis, facetization requirements exist in order to 
accurately represent curvature with respect to wavelength. 
For low-frequency analysis, facetization requirements are 
needed to accurately represent the variation of the induced 
currents and usually have strict limits on how much 
facetization is needed based on the operating wavelength 
and the target size. 

All of these parameters have a direct impact on the 
required fidelity of the virtual target. At higher 
frequencies, small details become more important as the 
frequency increases, while at lower frequencies, the 
overall dimension and shape of the major features have 
greater influence in obtaining accurate RCS 
characterizations. 

HIGH FREQUENCY ANALYSIS 

In the generation of high-fidelity CAD models, two key 
issues arise. First, there must be a determination by the 
modelers concerning whether or not an individual feature 
should be modeled. This criterion is referred to as feature 
existence or level of detail (LOD). Second, when a feature 
is modeled, the modelers must determine what facet 
density to use to properly represent the feature curvature. 
This criterion is the level of resolution (LOR) parameter. 

The answer to these issues is based upon the ultimate 
use of the models and of any data generated from the 
models. In the context of this study, the models are to be 
used for synthetic electromagnetic signature generation at 
X-band. The conclusions reached in this analysis are 
therefore dependent on the application for which the 
models and any subsequently generated data are used. 

The geometric modeling criteria used during the 
generation of a model are dependent on a number of 
conditions. Since electromagnetic scattering inherently 
depends on the size of features in terms of wavelengths, 
the frequency of operation of the radar is an important 
factor to consider. The form of the data, whether it be 
total RCS, range profiles, or synthetic aperture radar 
(SAR) imagery also plays a part. Resolution parameters 
for these data formats also play a significant role. Finally, 
the processing steps used to operate on the data also affect 
the conclusions. 

This study was designed to be as comprehensive as 
possible with the current state-of-the-art in CAD 
modeling and electromagnetic signature generation. Five 
ground targets, the BTR-70, M-3, M-35, T-72, and ZSU- 
23/4, were chosen for this study. As an example, a 
photograph of the ZSU-23/4 used during the measurement 
process and an image of the baseline virtual model are 
shown in Figure 1. The highly accurate, physically 
representative geometric models of these targets were 
configured according to different LODs and LORs. 
Signatures were  at numerous  elevation and azimuth 

Figure 1. ZSU-23/4 and corresponding CAD model 
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angles. All of this data was compared to measured SAR 
imagery using various signal processing techniques. 

Data Generation Tools 

As noted above, most CEM codes can be characterized as 
using either a "low-frequency" or "high-frequency" 
approach. The parametric analysis presented in this report 
examines the fidelity requirements using both approaches. 
For the high-frequency analysis, all of the synthetic 
signature generation was performed using the Xpatch 
(version 2.7) suite of prediction software tools. 

Xpatch is used predominantly in high frequency RCS 
computations where the RCS can be calculated using 
asymptotic approximation techniques such as Physical 
Optics (PO) and PTD. In conjunction with PO/PTD, 
Xpatch determines where energy is incident on the target 
and how energy from one point on the target interacts 
with other points (multi-bounce) by employing a ray 
tracing technique called "Shooting and Bouncing Rays" 
(SBR). In addition to multi-bounce, SBR also provides 
Xpatch with a convenient way of determining the 
shadowing of one portion of the target by another. 

Xpatch does not, however, account for higher order 
scattering mechanisms such as traveling or creeping 
waves. These higher order effects provide little 
contribution to the RCS at the higher frequencies, but 
become major contributors as the targets electrical size 
decreases. In addition, the modeling of non-conducting 
materials poses difficulties for all high-frequency 
asymptotic computational electromagnetic analysis codes, 
including Xpatch. Fortunately, the RCS of most ground 
targets is dominated by the specular returns of large 
metallic features, such as hulls and turrets. It has been 
demonstrated through measured-to-synthetic data 
comparisons that removal of non-metallic materials does 
not have an appreciable effect on the predicted RCS data 
for these targets. Therefore, to minimize run times all 
non-metallic materials were removed from the targets 
included in this task. 

Level-of-Detail Configurations 

Electromagnetic scattering is significantly dependent on 
the frequency of the radar. Targets, and the individual 
features composing the target, produce different scattering 
mechanisms depending on the size of the features with 
respect to the associated wavelength. Furthermore, the 
path-length relationships between scattering locations, 
and thus the complex summation of the scattered fields, is 
affected by the frequency. The task at hand is to 
determine what LOD is necessary, at the particular 
frequency of operation, for accurate signature generation. 

Another significant factor in determining the required 
LOD for a given accuracy is the format and resolution of 
the measured data that the synthetic data is required to 
replicate. For this analysis, the measured data is in the 
form of SAR data with approximately 8 by 8 inch pixels. 

Some additional qualifications must be made, however. 
Previous studies have indicated that although the 
scattering values from electrically-small features is 
somewhat suspect, these contributions can be vital to the 
target signature if these scattering mechanisms are the 
primary contributors in a given range bin (for range 
profiles) or in a given range/cross-range location (for 
SAR images) [2]. This phenomenon is more prevalent for 
air-targets, such as missiles, than for ground targets. 

A number of different criteria, such as surface area, 
volume, and maximum dimension, may be used to 
generate the LOD variations. Surface area was ultimately 
chosen because it is generally more indicative of the level 
of scattering than the other criteria. 

Based upon the results of a previous study that identified 
the signature differences for ground targets with respect to 
synthetic baseline data [3], LOD levels for the current 
study were set at surface areas of 5, 10, 50, 100, 250, 500, 
and 1000 square inches. Thus, the 5 square inch LOD 
configuration, designated by LOD0005, was generated by 
removing all of the features with a surface area less than 5 
square inches from the baseline model. This process is 
quickly performed in SAIC's ModelMan software 
environment, which has a feature that automatically 
identifies which parts should be toggled off based upon a 
user-defined setting of the computed surface area. As an 
example, the LOD0100 variation is shown in Figure 2, 
and the parts that were removed from the baseline model 
in order to generate this variation are shown in Figure 3. 

Level-of-Resolution Configurations 

For the accurate generation of electromagnetic scattering 
at high-frequencies, it is also necessary to properly 
represent the surface curvature in the model. The term 
level-of-resolution is used to identify the different 
amounts of facetization on curved surfaces. 

The accuracy in representing a curved surface is 
dependent on the radius of curvature. The smaller the 
radius of curvature, the greater the necessary facetization 
to accurately represent the curved surface. At one extreme 
is a flat plate, which has an infinite radius of curvature. 
For high-frequency scattering models, only two-triangular 
facets are often used to model flat plates. 
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Figure 2. LOD0100 variation of the T-72 
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87.5%, 75.0%, 62.5%, 50.0%, and 37.5%. The model 
variations are designated by the names LOR875, 
LOR750, LOR625, LOR500, and LOR375, respectively. 

Due to previous experience in reducing the facetization 
level [4], where relatively large errors in the signatures 
were noted, a very strict visual inspection of the new 
surfaces was performed. If the resulting surface was 
noticeably displaced at a given reduction level, the facet 
reduction for the part was stopped at the previous step. 

Thus, the five LOR configurations were generated for 
each of the five targets using this procedure. As an 
example, the LOR variations for the T-72 turret are shown 
in Figures 4 and 5. 

Figure 4. Baseline for the T-72 turret 

Figure3. Parts removed for LOD0100 

However, the local radius of curvature (which in general 
is a function of position on the surface) is a property that 
is often not readily available in the model. Some 
facetization algorithms can use a parameter related to 
radius of curvature, such as chord deviation tolerance, 
however this is neither universal nor is it the only 
parameter within meshing algorithms. Thus, an 
appropriate criterion for LOR variation is more elusive 
than for LOD variation. 

After considerable effort in using various combinations of 
available parameters to define an LOR criterion, it was 
noted that the original facetizations of the target features 
inherently contained a reasonable consistency with 
respect to facetization. This consistency occurred because 
the CAD modelers instinctively adjusted the meshing 
parameters to produce features with similar facetization 
levels with respect to curvature as noted by a visual 
inspection. Thus, it was determined to used percentage 
reductions in the facet count of the baseline feature as the 
LOR criterion. The LOR reduction levels were set at 

Figure 5. The LOR375 variation 

Analysis Methodology 

The methodology used to generate the SAR validation 
and comparative metrics that were implemented in this 
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study is now discussed. This process has the desired 
properties of being automated, repeatable, and modular. 

Each measured image is operated on in rum. In order to 
replicate a typical image processing system, the image is 
first converted (or mapped) to an integer-valued one with 
pixel values ranging from 0 to 255. The measured image 
is then segmented to remove the target from the 
background noise. As the measured data for this study did 
not have uniform pixel sizes from image-to-image, the 
segmented measured image is then resampled to provide 
an image with the same pixel dimensions as the synthetic 
data. Finally, this result is then low-pass filtered. 

Because the XpatchT data is in complex scattering matrix 
form, the complex-valued candidate synthetic SAR image 
is first converted to a real-valued image with linear units. 
This image is then converted to dBsm via a logarithmic 
transformation, and then to an integer valued one. The 
synthetic image is then low-pass filtered. In order to 
account for offsets between the measured and synthetic 
data sets, the measured and synthetic images are then 
equalized by equating the means of the pixel magnitudes. 

Before applying the metrics, however, the two images are 
shifted over various combinations in both the horizontal 
and vertical directions. This process accounts for the lack 
of registration between the measured and modeled 
images. Thus, the metric is used to evaluate the 
comparison at the various shifts, and the best comparison 
over all possible shifts is retained as the best error metric 
for that candidate image. 

The remaining candidate synthetic images are then each 
evaluated with the measured image. The candidate 
synthetic image with the smallest error metric, i.e., the 
best matching score, is identified as the best match. The 
process is then repeated for each measured image. After 
looping over all the measured images in an elevation set, 
mean metrics are computed by averaging the metrics over 
azimuth. 

High Frequency Analysis Results 

As previously discussed, the LOD variation study 
consisted of a baseline geometry model for each of the 
five targets (BTR-70, M-3, M-35, T-72, and ZSU-23/4), 
plus seven LOD variations for each target. Scattering 
centers were produced on each of these 40 models at a 
variety of elevation and azimuth angles. SAR images 
were then computed at 1° steps in azimuth at the three 
elevation angles of interest (17°, 29°, and 46°). The 
images in each 5° azimuth window were averaged in 
order to produce an image template at 5° steps in azimuth. 

These synthetic image templates were then compared to 
the measured data. 

The correlation error for each measured-to-synthetic 
comparison was computed, and the lowest error was 
stored for each measured image. The average CE over all 
measured azimuths was then determined at each elevation 
angle. These average correlation errors are thus the 
average errors for the approximately 275 measured 
images at each elevation angle for each target. 

The original criterion for producing the LOD variations 
was surface area which has units of length squared. By 
inspection of the data, it was determined that it was more 
useful to use a linear length criterion for plotting 
purposes. Thus, the concept of equivalent side length 
(ESL) was generated. The ESL is defined to be the length 
of a side of a cube with the same surface area as the 
modeled part, or 

ESL.M, 

where SA is surface area of the equivalent cube. The ESL 
axis is also scaled in terms of wavelength. This 
formulation allows the analyst to think in terms of the 
removal of parts based upon the length in wavelengths, 
instead of the surface area of the part, which is a less 
intuitive parameter. 

The individual CEs at each azimuth angle (for each LOD 
variation at each elevation angle) were also compared to 
each other to determine which modeled target produced 
the lowest CE. These predictions over the approximately 
275 measured images at each elevation angle (for each 
target) were then used to create a confusion matrix which 
identifies the percentage of cases in which the algorithm 
predicted that each target was present. Figure 6 illustrates 
the overall average of correct identification for all models 
over each elevation. 

As seen in the figure, the percentage of correct 
identification begins to degrade significantly as the size of 
the parts removed becomes greater that 3 ESL, or 3 
wavelengths on a side. This general trend was noted in all 
models. 

The LOR variation study did not produce similar trends in 
the metric scores. In retrospect, the use of only a small 
number of scattering features and the strict refacetization 
criterion resulted in no noticeable change in the CEs and 
the corresponding identification percentages. These LOR 
reductions reduced the overall facet count of these models 
by approximately 20% for the lowest LOR level. 

60 



1.1 
yjtjp           . I 

J3 i^7v^~'t 

BNL1 >. -B- 17 

Q 
BS.   >k -*- 29 

-It 46 

-f- Avera r 0 
c 

\ 
\^ 

\            N^% • 0." 
< 
1 
N 
0 
En - 

z 

0.1 1       ,,   j   ,,,,.,,   |   ;   ,   , , . , 
( )           2          4          6           8          10         12 

Equivalent Side Length 

Figure 6. LOD study results. Average correct 
identification percentages for all targets versus the 
equivalent side length of the components removed. 

LOW FREQUENCY ANALYSIS 

For the low-frequency analysis, the synthetic signature 
generation was performed using the Fast Illinois Solver 
Code (FISC). FISC employs the method of moments 
(MoM) technique and the Multi-Level Fast Multipole 
Algorithm (MLFMA) to solve for the induced currents on 
the surface of the target which is described by a triangular 
facetted mesh. The fast multipole method is an efficient 
way to perform matrix-vector multplies whereby the field 
at each of the vertices of the triangular mesh, due to every 
other point on the target, is calculated for all the vertices 
comprising the target surface definition. Unlike high 
frequencies, low-frequency electromagnetic energy 
penetrates thin non-metallic materials making them 
appear to be totally transparent. Therefore, for 
consistency and to keep the run times at a minimum, all 
non-metallic parts were also removed from the low- 
frequency targets prior to generating the synthetic RCS 
data. 

The low-frequency parametric fidelity analysis was 
accomplished by first creating FISC compliant CAD 
models from two baseline high-fidelity virtual targets. 
Three different baseline FISC models were created to 
support the mesh requirements across the low-frequency 
spectrum. The fidelity of these baseline targets was then 
varied and synthetic RCS data was generated for each 
fidelity variation. Unfortunately, no useable measured 
data was found to perform measured-to-synthetic data 
comparisons. SAIC did make several requests for 
measured data and actually received low frequency 
measured  data  collected  in  support  of the  Defense 

Advanced Research Projects Agencies Foliage 
Penetration (FOPEN) program. However, the data had 
been preprocessed and was unusable for this effort. 
Therefore, each fidelity variant was compared to its 
baseline FISC compliant model for the specific frequency 
of interest. 

CAD Model Design 

The facet mesh requirement presents a difficult challenge. 
FISC requires the model to have matched edges due to 
how the MoM technique determines the electromagnetic 
interactions. To accurately represent a complex geometric 
model, the curvature of the surfaces of the model must be 
maintained. Without the representation of curvature, the 
model visually appears blocky and can produce 
anomalous RCS values. Since the wavelength in the low- 
frequency region is large, smaller parts on the model can 
be eliminated, reducing the complexity of the model. The 
model must be fitted with a uniform mesh that is specific 
and "optimum" for the frequency being tested. In other 
words, for each frequency band within the "low- 
frequency" region, a new model must be developed with a 
mesh that is specific to that frequency band. If the model 
being used by FISC is determined to have a facet 
maximum edge length greater than the user specified 
accuracy requirement, then FISC will automatically re- 
discritize the surface of the model. It does this by sub- 
dividing the original facets to the point that the maximum 
edge length parameter is satisfied. Allowing FISC to 
perform this action may only be valid if the model is used 
within a small frequency deviation from what the model 
was built because the curvature of the surfaces is not 
updated as it remeshes the model. 

Building a new complex model for each frequency band 
is a non-trivial problem. If the model was originally built 
using a single, advanced, solid-modeling computer-aided 
design (CAD) package, e.g., AutoCAD, the surfaces can 
be welded together and the resultant solid model can be 
exported to another program to generate a uniform mesh. 
If the model exists only in a facet representation, then the 
problem becomes complicated in that the surfaces cannot 
be extracted directly from the model. 

To approximate the surface of the model in an automated 
fashion, a concept was developed that implements 
volumetric techniques. To accomplish this, the space 
containing the input geometry is voxelized, or quantized, 
into cubes whose size is determined by the input edge 
length. This voxelization is simply a structured point set 
bounding the input geometry. The vertices of the 
voxelized space are assigned values that record the 
distance from that voxel vertex to the underlying input 
geometry. All distances are positive. Because of the 
quantization of space, you cannot record signed distances. 
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This leads to separation in parts having thin or small 
areas. Using the "Marching Cubes" algorithm, an 
isosurface is extracted from the structured point set. A 
contour value must be specified. Since all scalars are 
positive, you cannot extract the zero surface, which 
corresponds closest to the underlying geometry. Instead, 
you must specify a contour value of at least the size of a 
single voxel. This generates geometry that is offset from 
the underlying geometry. A positive side effect of this is 
that disjoint components in close proximity (no more than 
the offset apart) to one another in the input geometry are 
combined. The "Marching Cubes" algorithm tends to 
create some facets with short edges or with an 
unacceptable aspect ratio. To overcome this, the 
geometry's point coordinates are adjusted using Laplacian 
smoothing. This relaxes the mesh and makes the facets 
better shaped. Using the ModelMan software, you can 
check the compliancy of the resulting FISC model. 
ModelMan will report min edge length, max edge length, 
max/min edge length ratio, min aspect ratio, max aspect 
ratio, and average aspect ratio. To use the program, the 
user needs only to have a facet representation of the 
geometry. The user may pick the maximum edge length 
as input to the code. This code, called FISCulator, was 
used to develop the 1000 MHz models of the ZSU-23/4 
and the T-72 [5]. 

FISC Parameters 

As with any code, production parameters can be set to 
balance the quality of the results versus computer 
resource requirements. In this case, relaxing the accuracy 
of the EM solution will lower resource requirements, 
which will allow for a realizable solution. Two of the 
FISC parameters of most importance are the maximum 
edge length and the solution method. The maximum edge 
length is defined such that a particular fraction of a 
wavelength will be present across the edges of the facets, 
i.e., many edges comprise one wavelength. The maximum 
edge length must be chosen correctly to obtain accurate 
RCS values. The consequence of this parameter is 
twofold; first, the geometric model must be conformed to 
this specification, which becomes prohibitive at higher 
frequencies; second, the CPU and memory requirements 
are increased because of the number of unknowns 
developed due to a higher number of facets on the model. 
If the number of wavelengths across the edge is too large, 
then the accuracy of the RCS will degrade. As the number 
of wavelengths becomes small, the memory requirements 
rise, and can realistically approach 3 GB or more. For the 
purposes of this study, it was determined that a maximum 
edge length value of 0.2 wavelengths would be sufficient 
to maintain a reasonable RCS while controlling memory 
requirements [6]. 

The solution method involves the method by which the 
matrix developed by the code is solved. Solution 
techniques include an LU Decomposition method, an 
iterative method using the full matrix, and the Multilevel 
Fast-Multipole Algorithm (MLFMA) [7]. Using LUD, the 
full matrix is used and the entire data matrix must be 
stored in memory. For smaller targets, this method is 
preferred because the matrix is solved exactly. Yet, LUD 
is prohibitive for large, complex targets because of the 
memory requirements introduced by higher numbers of 
unknowns. The iterative method, which is also useful for 
small targets, performs an iterative solution to the matrix, 
providing an approximation to the solution. This method 
saves run time and memory requirements over LUD, but 
is still only realistically used for small targets. 

The MLFMA is an iterative solution of the MoM matrix 
utilizing subsections of the full matrix to solve the 
problem. "The fast multipole method is an efficient way 
to perform matrix-vector multiplies whereby the field at 
each particle due to every other particle is calculated for 
all particles in an ensemble of N particles. Ordinarily, this 
would require 0(N2) calculations. With the fast multipole 
method, this can be reduced to 0(N) or 0(NlogN) 
depending on the spatial distribution density of the 
particles and implementation" [7]. In other words, the 
MLFMA helps to reduce the memory requirements of the 
code by reducing the complexity of the matrix at each 
step. The tradeoff is a controllable but induced error in the 
approximation to the calculated RCS. 

Model Generation and Variation 

As described earlier, the models needed for this task were 
generated using several different techniques. To generate 
a model for 1000 MHz, the FISCulator was used to 
assimilate the available high-fidelity high-frequency 
model for FISC geometry compliance. The resulting 
models of the ZSU-23/4 and the T-72 are illustrated in 
Figure 7 and Figure 8, respectively. 

Figure 7. ZSU-23/4 1000 MHz Solid Model 273,354 
facets  -410,000 Unknowns 
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Baseline L0D1 

Figure 8. T-72 1000 MHz Solid Model 
402,624 facets  -604,000 Unknowns 

These two models were used to produce signatures at 
1000 MHz using the Space and Missile Defense 
Command (SMDC) Advanced Research Center (ARC) 
High Performance Computer (HPC). Because of past 
computer resource limitations, the production of 
signatures using FISC at frequencies at and above 1000 
MHz has been mostly limited to smooth geometries and 
bodies-of-revolution. With the development of 
FISCulator, the more complex models of the ZSU and the 
T-72 were realized. 

To generate models for 150 MHz and 450 MHz for the 
ZSU, the original CAD geometry file was used. Since the 
ZSU was originally modeled using a single CAD 
package, this process was straightforward. Small parts 
were removed and a solid model was created within the 
CAD environment. The resulting geometry was read into 
a third party meshing tool called MSC/NASTRAN, which 
created the FISC compliant mech. 

In addition to the baseline model that contained all the 
parts deemed appropriate for the frequency band, three 
level-of-detail (LOD) models were developed. The 
signatures of these models were then compared to the 
baseline model. The baseline and LOD variations for the 
ZSU are shown in Figure 9. LOD 1 is configured as the 
baseline minus the small parts on the turret. LOD 2 is 
configured as LOD 1 minus the guns. LOD 3 is LOD 2 
minus the radar assembly. 

Development of the 150 MHz and 450 MHz models of 
the T-72 was more complicated. Since this target was not 
originally built using a single CAD package, parts of the 
model had to be rebuilt using a common CAD 
environment. The MSC/NASTRAN was used to create 
the mesh. Although time consuming, the baseline model 
and three LOD variations were and are illustrated in 

LOD 3 LOD 2 

Figure 9. LOD Variations for the ZSU-23/4 

Figure 10. The LOD variations of the T-72 are similar to 
that of the ZSU. LOD 1 is configured as the baseline 
minus the small parts on the turret, including the smoke 
canisters and the toolboxes. LOD 2 is configured as LOD 
1 minus the main gun. LOD 3 is configured as LOD 2 
minus the fuel barrels. 

Baseline LOD1 

LOD 3 LOD 2 

Figure 10. LOD Variations for the T-72 

LOW FREQUENCY RESULTS 

(Plots of the total RCS of the ZSU and the T-72 are not 
shown due to the need for grayscale images in the 
documentation. Please refer to Reference  1  for these 
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plots.) As stated earlier, the scattering mechanisms at low- 
frequencies are global phenomenon in that every part on 
the target interacts with every other part. The scattering, 
especially at resonance where the target length 
approaches one wavelength, is an integration of the 
energies from all areas of the target that are either 
illuminated by the impending electromagnetic wave, or 
are influenced by induced traveling waves on the surface 
of the target. Discontinuities in the current flow will 
promote higher levels of scattering. Overall, it is found 
that large structural components of the target tend to 
impact the overall radar cross section more that those 
parts that are either smaller in size or are only large in one 
dimension. The definition of large and small in this 
context refers to the parts electrical size in wavelengths. 
Thus, as expected, removing the large radar dish from the 
turret of the ZSU has a dramatic impact on the RCS at 
nose-on and rear-on. In this case, the bulkiness and size of 
the radar dish provides a significant contribution to the 
scattering, especially at those angles. For the T-72, at 150 
MHz the fuel barrels on the rear of the T-72 appear to 
have a notable effect on the RCS at rear-on aspects where 
as the small parts on the turret do not. Once again, since 
the fuel barrels are rather large objects when compared to 
the parts on the turret, it is expected that the scattering 
from the barrels will have greater affect on the overall 
RCS. Since the wavelength at 450 MHz is 1/3 of the 
wavelength at 150 MHz, the definition of small parts 
versus large parts changes. At this higher frequency, the 
parts that are on the turret of the T-72 that were taken off 
for the LODs have an impact on the overall RCS. 

Thus, variations in the total RCS of a target at low- 
frequencies is dependant upon the location and structural 
size of its individual parts and the definition of those parts 
as large or small based on the frequency. Parts that have 
an electrically large surface area, e.g., the radar dish on 
the ZSU, will have a significant impact on the total RCS. 
Those parts that are electrically small or only have a 
greater size in one dimension will not have a significant 
impact on the total RCS. 

At 1000 MHz, the components on the model become 
more important to the overall scattering from the target. 
Since the wavelength is reduced significantly, the region 
of operation is in between that of low-frequency and high- 
frequency. To examine the low-frequency approach to 
solving the scattering problem, FISC was used to develop 
signatures from the ZSU and T-72 at 1000 MHz. Figure 
11 illustrates the current distribution on the ZSU at nose- 
on. 

Figure 11. Current Distribution on the ZSU-23/4 at 
1000 MHz, illuminated at 10° elevation and 0° 

azimuth 

Figure 12 illustrates the current distribution on the T-72 
at 45° azimuth. The peaks and valleys of the current 
distribution can be seen, providing a feel for the currents 
that are induced on the target at 1000 MHz. Note that the 
wheels on the T-72 are illuminated at 45° azimuth while 
those of the ZSU at 0° azimuth are not. 

Figure 12. Current Distribution on the T-72 at 1000 MHz, 
illuminated at 10° elevation and 45° azimuth 

FISC Runtimes and Memory Requirements 

The majority of all low-frequency production for this task 
was accomplished using the ARC's HPC. Table 1 
provides a breakdown of the runtimes that were incurred 
for each system and its LODs. The runtime numbers are 
in hours. Of note is the difference between the number of 
hours needed for each frequency level. Since a greater 
number of facets are needed to accurately represent the 
target as the frequency increases, the number of 
unknowns also increases. 
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Run Times Baseline LOD1 LOD2 LOD3 
(hours) 
ZSU 150 MHz 79.50 81.73 68.62 64.04 
ZSU 450 MHz 460.70 350.37 343.59 293.49 

ZSU 1000 MHz 546.40 

T-72 150 MHz 61.44 37.29 28.60 21.69 
T-72 450 MHz 291.52 420.74 314.88 447.40 

T-72 1000 MHz 737.49 

Table 1. Run Times for the ZSU-23/4 
and T-72 

Table 2 illustrates the memory requirements for each 
system. The bold numbers indicate the memory 
requirement using FISC vl.0. The rest of the values 
indicate the memory requirement when using the updated 
FISC vl.3. As before with run times, as the operating 
frequency is increased, a greater number of facets are 
needed, which in turn increases the amount of required 
memory needed to complete the simulation. 

Memory Baseline LOD1 LOD2 LOD3 
Requirement (MB) 
ZSU 150 MHz 73.7 68.6 61.2 54.7 
ZSU 450 MHz 325.9 251.5 234.9 222.6 
ZSU 1000 MHz 2245.1 

T-72 150 MHz 109.8 73.9 55.2 27.0 
T-72 450 MHz 126.9 175.5 135.7 251.7 
T-72 1000 MHz 2699.5 

Table 2. Run Times for the ZSU-23/4 
and T-72 

The values in Tables 1 and 2 are significant when 
deciding what kinds of resources are needed to produce 
low-frequency signatures. For the 1000 MHz case, 
memory requirements go through the roof while run times 
make it necessary to utilize multi-processor machines. 
The use of high-performance computers has provided the 
means by which these signatures can be produced. 
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ABSTRACT 

The Office of the Secretary of Defense (OSD), Central 
Test and Evaluation Investment Program (CTEIP) is 
tasked to provide a coordinated process for making 
joint investments in defense test & evaluation (T&E) to 
offset the challenges presented by declining 
investments in test assets and increasing test 
requirements. Under CTEIP sponsorship, the Navy and 
Air Force are jointiy developing three Joint Installed 
System Test Facility (JISTF) enhancements that are 
based on dynamic virtual reality simulation technology. 
The three enhancements are the Infrared Sensor 
Stimulator (IRSS), Generic Radar Target Generator 
(GRTG), and Joint Communications Simulator (JCS). 
The subject of this paper is the IRSS that was first 
briefed at the 1997 GTM&V conference. 

The IRSS system will be used to stimulate installed 
Infrared/Ultraviolet (IR/UV) Electro-Optic (EO) 
sensors undergoing integrated developmental and 
operational testing. The IRSS generates digital infrared 
scenes in real-time to provide a realistic portrayal of 
infrared scene radiance as viewed by an JJR. system 
under test in a threat engagement scenario. This paper 
will describe the continuing IRSS development effort 
including new work completed in the past year. There 
will be a brief overview of the IRSS subsystems and 
functions, with emphasis on recent enhancements to its 
IR modeling capabilities. Specifically, the paper 
addresses issues involving the integration of three IR 
models: Spectral In-Band Radiance of Targets and 
Scenes (SPIRITS), Physically Reasonable IR Signature 
Model (PRISM), and IR Electro-optical Naval 
Engagement (IRENE). Also, there will be discussion 
regarding use of a radiometrically accurate method of 
employing geospecific material properties in the 
rendering of background terrain. 

KEYWORDS: Installed Systems Testing, Infrared 
Sensors, Scene Simulation, Sensor Fusion, 
Interoperability, Electronic Combat Test Process, 
Infrared Scene Projection, Sensor Stimulation. 

INTRODUCTION 

The Infrared Sensor Stimulator (IRSS) is a modular 
cost-effective system that will be used to generate high 
fidelity Infrared (IR) scenes for stimulation of installed 
JR. Electro-Optic (EO) sensors on aerospace platforms 
undergoing integrated developmental and operational 
testing. The IRSS will be capable of stimulating 
multiple types of sensors such as Forward looking 
Infrared (FLIR), Missile Warning Systems (MWS), 
Infrared Search and Track (IRST) and Missile Seekers. 
It is being developed under the sponsorship of the 
Office of the Secretary of Defense (OSD) Central Test 
and Evaluation Program (CTEIP) for use in a Joint 
Installed Systems Test Facility (JISTF) environment. 
The IRSS will be capable of satisfying installed sensor 
system test requirements through dynamic stimulation 
of IR/EO sensors which are integrated with other 
avionics processing software and platform sensor 
systems, [(e.g., radar, operational flight programs 
(OFP)]. To be a valid test tool, the spatial, spectral and 
temporal components of the IRSS computer-generated 
synthetic scenes must be of sufficient fidelity to 
produce sensor responses that are indistinguishable 
from the tested sensor's response to "real-world" 
conditions. This paper discusses the current capabilities 
and recent additions to the IRSS. 

mss OVERVIEW 

The IRSS System is an integrated hardware/software 
system that has been specifically designed to support 
the design, development, integration, and testing of 
IR/EO sensor systems. The IRSS supports both 
performance characterization and integrated sensor 
testing. The IRSS system generates radiometrically 
correct scenes in real-time for reactive installed systems 
testing of a variety of infrared and ultraviolet sensor 
systems. The generated scenes provide a realistic 
portrayal of the infrared scene radiance as viewed by 
the unit under test (UUT) in operational scenarios. Use 
of commercial-off-the-shelf (COTS) Silicon Graphics 
(SGI) fast symmetric multiprocessing hardware has 
minimized cost and development time. During real- 
time scene simulation, the multiprocessors are used to 
update    polygon    vertex    locations    and    compute 
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radiometrically correct floating-point radiance values 
for each waveband. Scene radiance is calculated on a 
frame by frame basis accounting for the relevant 
contributions from the sky, sun, targets, terrain, and 
atmosphere as a function of the engagement geometry 
by using existing validated high-fidelity IR models. 

The frame output of the IRSS system is configurable to 
match the characteristics of the sensor system under 
test. Sensor parameters such as frame size, frame rate, 
spectral band, number of bands, pixel resolution, and 
field of view are user configurable. The digital output 
of the IRSS can be formatted for direct injection into 
receiver/processor hardware or to drive an infrared 
projection system. 

The baseline IRSS system includes the hardware and 
software components to provide a complete IR/EO 
simulation and test environment. Functionally, the 
IRSS system includes software to support offline 
modeling, database development, scenario generation, 

and simulation control. Real-time functions include 
scene generation and sensor stimulation. The IRSS 
system supports both open-loop and closed-loop 
simulation. Open-loop simulation provides the user 
with the capability to execute predefined, time- 
sequenced scenarios ensuring total control over 
scenario events. Closed-loop simulation is supported 
through an external interface where the unit under test 
(UUT) and target position data can be generated by 
external simulations and provided to the IRSS system 
for reactive engagements. 

In an integrated configuration, the IRSS can be coupled 
with Radio Frequency (RF) systems and facility-level 
composite mission simulators for correlated, 
synchronized multispectral testing. The IRSS supports 
the stimulation of single or multiple aperture sensor 
systems. The system is modular in design to support 
incremental expansion of both function and 
performance to meet current and future test 
requirements. 

Networks and Controls 

installed Systems 
Test Facility 

(Infrastructure) 

Figure 1 IRSS System Architecture 

IRSS SYSTEM ARCHITECTURE 
IRSS is a family of integrated software applications and 
hardware that supports all phases of the IR simulation 
and test process. Applications are available for offline 

modeling and scenario development, as well as real- 
time scene generation and sensor stimulation. The 
IRSS, as illustrated in figure 1, consists of six primary 
subsystems that are partitioned between offline and 
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real-time functions. The offline functions include the 
Modeling and Database Subsystem (MDBS) and 
Scenario Development Subsystem (SDS). These 
applications provide the user with all of the tools 
necessary to model and construct a virtual T&E warfare 
environment including terrain, targets, false targets, and 
atmospheric and weather parameters. The Simulation 
Control Subsystem (SCS) and the Scene Generation 
Subsystem (SGS) are the core of the system and 
provide the computing resources and processing 
required to generate infrared scenes in a real-time 
reactive mode. The two stimulation subsystems, the 
Signal Injection Subsystem (SIS) and the IR Point 
Source Projector (IRPSP) Subsystem, provide the 
capability for real-time electrical signal injection into 
the processing electronics and/or optical projection of 
scenes directly onto the sensor's detectors. COMPTEK- 
Amherst Systems Inc. (CASI) is developing the four 
subsystems of the scene generation/simulation 
component. COMPTEK-Amherst Systems Inc and 
SPARTA Inc. (SPARTA) are developing the SIS and 
IRPSP stimulation subsystems, respectively. A full 
field of view (FOV) image Scene Projection Subsystem 
(SPS) is planned as a future enhancement.  Ultraviolet 

generation and projection are also a planned future 
enhancement. 

SCENE GENERATION CAPABILITY 

The MDBS capability provides the test engineer or 
operator with the capability to build files representing 
threats, real and false targets, backgrounds, and 
atmospheric elements off-line, (e.g., In a non-real-time 
mode the operator will build files from sources such as 
plume radiance models, missile trajectory models, 
terrain elevation data, measured and/or statistically 
derived clutter data, and atmospheric models.) The 
primary output of the MDBS is the IR/EO Database, 
which contains the files used for subsequent scenario 
development and real-time simulation. The models 
identified in Table 1 are used in the calculation of 
signatures, atmospheric conditions, and target and test 
platform flight paths. Model selection is based upon 
degree of use in the simulation community, identified 
as a government 'standard', e.g. endorsement by 
Survivability Vulnerability Information Analysis 
Center (SURVIAC) or Joint Army, Navy, and Air 
Force/ Chemical Propulsion Information Agency 
(JANNAF/CPIA. 

Table 1 - Third Party Model Utilization 
Model Function Implementation 
Signatures 

SPF/SIRRM Missile & Air Vehicle Plumes Point source intensity only 
SIRRM Extended Plumes Under investigation 
SPIRITS Air Vehicle Body ,000 airframe facets typical 

esolution —• facet reduction 
synchronous, non-real-time execution via interface 

PRISM Ground Vehicles 
Ships 

,000-8,000 tank facets typical 
esolution -> facet reduction 
synchronous, non-real-time execution via interface 

TERTEM Terrain Heat Transfer/ 
Temperature 

OSART/ERTEM terrain thermal is integrated 
lack box interface for using other models 

IRENE Ships & Sea Backgrounds hip signatures integrated as OpenFlight• objects 
ea surface integrated as radiance textures 

Atmospheric 
MODTRAN IR Attenuation, Path Radiance & 

Solar Irradiance 
eal-time lookup tables from offline execution 
ile based interface enables use of other models 

OSIC UV Background/Scattering eal-time lookup tables from offline execution 
mplemented as prototype only 

Cloud Background (not 3D) Under investigation 
Obscurant Background (not 3D) Under investigation 

Trajectory 
BLUEMAX Test  &  Adversary Air  Vehicle 

Flight Paths 
Integrated or offline execution -• scripted trajectory 
with interactive graphical way-point entry 

ESAMS Surface-to-Air (S/A) missile flyout Integrated or offline execution -> scripted trajectory 
TRAP Air-to-Air (A/A) missile flyout Integrated or offline execution -» scripted trajectory 
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The MDBS also supports importing and converting 
external database elements from common terrain or 
target databases that use a standardized open 
architecture, three-dimensional geometric file format to 
provide commonality with other ISTF stimulators. 
Extended OpenFlight• has been selected as the 
'standard' for model input/output and databases. The 
IRSS incorporates the MultiGen• Application 
Program Interface (API) as a tool to support the 
creation, attribution, integration and execution of the 
models and databases. Use of the MultiGen also 
enables the import and manual attribution of other 
external databases. This process is illustrated 
schematically in Figure 2 using extended targets as an 
example. The construction of a Flight File Translator 
(FFT) is performed once for each external model that is 
to be used by the system. The primary objective of the 
FFT is to transform the model's native geometry 
representation into the OpenFlight format. The 
secondary objective of the FFT is to automatically 
place the appropriate object temperature and material 
attributes into the OpenFlight file. After this process is 
completed, the resulting OpenFlight files can be 
accessed and specified as scenario components through 
the IRSS Scenario Builder application. In the past year 
this process has been used to successfully import and 
utilize the outputs of PRISM, SPIRITS, and IRENE in 
IRSS scenarios. 

Figure 2 - Target Model Integration 

The output of the FFT is an OpenFlight file 
representative of the conditions for which the external 
model was executed. There are instances where some 
of the original conditions will change during the course 
of a scenario. Examples include tank barrel heating, 
engine compartment temperature, and throttle setting. 
These changes can be dynamically incorporated into a 
scenario through the Plug-In-Interface. This interface 
provides a mechanism by which specific changes can 
be incorporated into an object description when 
executing a scenario in real-time. The plug-in interface 
is a non-synchronized interface that enables third party 
or other external models to provide asynchronous 
updates to executing scenario files. The update 
frequency depends on model performance and the 
fidelity required for the target, and/or background 
signatures. 

Model translators are interfaces to MDBS. They can be 
developed by CASI or by IRSS users. Each model 
translator can consist of a graphical user interface 
(GUI),  a model processing function,  and database 

translator. The GUI provides easy and efficient 
execution of the model. This feature is important when 
operators are unfamiliar with the specifics of each 
model. The model processing function compiles the 
model output and performs the necessary manipulation 
of data for real-time scene generation. The database 
translator formats the data into a common database 
format for scenario development and scene generation. 

The MDBS contains the models, tools and databases 
used to represent targets and backgrounds in the test 
scenario. To compensate for their non-real-time 
execution speed, some models, e.g. Moderate 
Resolution Transmission (MODTRAN), Enhanced 
Surface-to-Air Missile Simulation (ESAMS), 
Trajectory Analysis Program (TRAP), are executed 
offline to create look-up tables or databases that are 
used during run-time scene generation. Once created, 
these look-up table databases become part of an EO/IR 
library. The IRSS System is required to respond to 
unscheduled, non-scripted events including man-in-the- 
loop commands in the external control-state whereas 
the trajectory models within the IRSS System are only 
intended for scripted applications. Not all of the 
models are restricted to off-line execution. 

The    Scenario    Development    Subsystem    (SDS) 
provides the operator or test engineer with the 
capability to define simulation scenarios in which 
single or multi-sensor equipped vehicles move through 
a simulated test area. The output of the SDS is a 
scenario file that is saved in the scenario database. The 
scenario file references scripted terrain, targets, threats, 
trajectories, and special effects selected from the IR/EO 
database. The file also references customized 
simulation elements. These elements include an 
atmospheric specification, sensor specification, test 
platform assignment, sensor channel assignment(s), and 
state information such as situation display setup, visual 
display setup, and instrumentation setup. The SDS 
provides a convenient user interface for quickly 
building or editing scenarios based on libraries of 
objects created in the MDBS. An interactive situation 
display provides a graphic scenario building and 
display capability. The situation display features 
interactive control of viewing geometry, symbology, 
and scenario components. An interactive scenario 
sequencer provides the ability to setup scenario 
parameters and script scenario events. Used in 
conjunction with the situation display, the sequencer 
provides an efficient environment for building, editing, 
and previewing test scenarios. The IR models TRAP, 
Aircraft Flight Path Generator and Mission 
Performance   Evaluation   Model   (BLUEMAX),   and 
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ESAMS have recently been integrated with the SDS. 
As a result of this integration, the situation display now 
includes a scenario sequencer that can be used to 
provide an interactive graphics-based environment for 
the preparation of scripted trajectories. During the 
scenario development process, the scenario can be 
previewed using the scenario animator. This feature 
allows the operator to pre-run the test engagement and 
evaluate scenario events against the simulation 
timeline. The scenario gaming area, player motion, and 
UUT FOV are visualized in the situation display. 
Simulation clock controls are provided to stop, start, 
and pause the scenario. 

The Simulation Control Subsystem (SCS) provides 
the operator or test engineer with the capability to 
control the execution of a simulation and perform fault 
tests on the IRSS channel hardware. A fault test and 
diagnostic capability is provided for assessing the 
health of the system and to assist in the operational 
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maintenance of system components. Input to the fault 
test function includes diagnostic scripts executed by the 
operator to determine the hardware operational state. 
Output consists of the pass/fail status of the performed 
tests along with states or trace messages showing test 
progress. Upon execution of the IRSS application, the 
SCS initializes by opening an existing or archived 
simulation file from the scenario database and setting 
the control state. When external and integrated control 
is disabled, the IRSS operates in a stand-alone mode in 
which the operator controls the simulation clock, 
situation display, visual display, and all 
instrumentation. When external control is enabled, 
control of the simulation clock, player positions and 
state, test platform interface, etc., is assumed by the 
Installed System Test Facility (ISTF) Operational 
Control Center (OCC). The OCC may send a load and 
initialize command to the SCS that contains a scenario 
script specifying some or all scenario and configuration 
information. 

The Scene Generation Subsystem (SGS) produces 
ER/EO scenes in real-time. The term 'real-time' is 
relative to the frame rate of the sensor under test (e.g. 
30 - 100 Hz for FLIR, 100 - 400 Hz for MWS). The 
SGS incorporates 'first principle' algorithms for the 

radiometric signature computation. A 'virtual' test may 
involve stimulation of up to three sensors requiring 
multiple SGS channels. Each channel stimulates a 
single sensor or a single aperture of a multi-aperture 
sensor. A sensor-specific configuration is supplied 
during initialization. The SGS performs both scene 
generation and scene rendering. During scene 
generation, the SGS determines the test scenario 
viewed gaming area, on a frame to frame basis, based 
on the direction or view of the sensor line-of-sight, and 
host platform position in space (e.g. altitude, heading, 
pitch, roll). The specified simulation file is examined 
to determine which polygons, representing players and 
targets, and background elements, occur within the 
viewed area, and are to be displayed in the simulation. 
The material characteristics and polygon viewing 
geometry are used to calculate radiometric values for 
polygon vertices. During scene rendering, polygons are 
decomposed into pixel elements and inserted into an 
output frame buffer resulting in a radiometric, spatial, 
and temporal representation of the scene as viewed by 
the sensor relative to its line-of-sight. This digital 
scene is the input from the SGS into either the SIS, for 
conversion into an electrical signal that is injected into 
the sensor processing electronics, or the IRPSP, for 
optical projection into the sensor's entrance aperture. 
Additional discussion of this subsystem is presented 
below. 

The IRSS Scene Generator generates radiometrically 
accurate scenes for installed systems testing of a wide 
variety of IR and UV sensor systems. The generated 
scenes provide a realistic portrayal of the in-band scene 
radiance as viewed by the system under test in 
operational scenarios. Scene radiance is calculated on a 
frame by frame basis accounting for the relevant 
contributions from the sky, sun, targets, terrain, and 
atmosphere as a function of the engagement geometry. 
The frame output of the scene generator is configurable 
to match the characteristics of the sensor system under 
test. Sensor parameters such as frame size, frame rate, 
spectral band, number of bands, pixel resolution, and 
FOV are user configurable. The digital output can be 
formatted for direct injection into receiver and 
processor hardware or to drive an IR projection system. 

The IRSS Scene Generator was designed specifically to 
address the core technical issues for IR/EO scene 
generation. Commercial scene generation systems are 
optimized for visual effects and standard display 
devices. Real-time IR/EO sensor stimulation requires a 
higher level of fidelity (scene quality and radiometric 
content) and usually involves large frame sizes at high 
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frame rates. The current scene generator hardware 
configuration consists of a Silicon Graphics Onyx2 

InfiniteReality® graphics computer with eight or 
twelve 'R10000' processors. The system can use either 
the SGI InfiniteReality or the COMPTEK-Amherst 
Systems Scene Rendering Subsystem (SRS) for final 
image rendering. The SRS is designed specifically for 
infrared applications while the InfiniteReahty is 
optimized for visual applications. The selection of the 
graphic system depends on the objective of the test 
facility. When evaluating the detection, tracking, or 
guidance performance of a sensor system, fidelity and 
radiometric validity are critical. In this situation, the 
accuracy and programmability of the SRS may be 
required. In cases where radiometric accuracy is less 
important and validation is not an issue, the 
InfiniteReality option may be preferred. 

The IRSS Scene Rendering Subsystem (SRS) is a 
graphics-processing pipeline developed specifically for 
rendering IR/EO scenes. The SRS overcomes many of 
the problems associated with adapting visual rendering 
systems for IR/EO simulation. The SRS uses full 32 bit 
floating point accuracy for all calculations including 
radiance (lighting), transparency, texture mapping and 
filtering, anti-aliasing, and hidden surface removal 
(z-buffering). The SRS can process up to six 16 bit 
colors or three 32 bit colors per pixel. Equations for 
pixel level lighting and atmosphere effects can be 
modified as desired to make tradeoffs between 
rendering accuracy and speed. Depending on the 
tradeoffs selected, a fully configured SRS can provide 
more than four times the radiometric accuracy of the 
InfiniteReality. In addition, the SRS can be tightly 
coupled with an IR/EO sensor in a reactive, closed-loop 
configuration, and dynamic frame size and frame rate 
changes can be processed with low latency. 

SCENE PRESENTATION CAPABILITY 

The Signal Injection Subsystem (SIS) accepts digital 
scenes produced by the SGS and creates an electrical 
digital or analog signal that is injected into the sensor 
image and signal processing chain. This subsystem is 
currently being developed and will be manufactured by 
CASI as a deliverable under an Air Force SBIR 
contract for a Universal Programmable Interface (UPI). 

As part of the signal creation function, the SIS must 
modify the scene to represent the effects of bypassed 
sensor components and phenomenology prior to the 
injection point, convert the modified image to a 
properly conditioned electrical signal, and provide the 
electrical   connection   to   the   sensor.      The   scene 

modification is accomplished by two custom processing 
components within the SIS: a convolution processor 
and a pixel processor. These SIS components use 
digital signal processor (DSP) arrays; high-speed Xilinx 
programmable gate array chips for the convolution 
processor, and Motorola 266 MHz Power PC 740 chips 
for the pixel processor. The latter hardware assembly is 
common to the polygon processor in the previously 
discussed CASI rendering engine. The sensor interface 
module (SIM), which is unique to each sensor, provides 
generation and conditioning of the electrical signal and 
its physical connection to the sensor. This assembly is 
a plug-in module that enables the SIS to be easily 
configured for different sensors. 

Additional functions of the SIS include processing (e.g. 
I/O handling) sensor control signals and, if necessary, 
emulating their functionality. These functions may 
require one or more electrical connections to the sensor 
or other test platform avionics systems. The SIS is 
based on the CASI Universal Programmable Interface 
UPI, which is discussed in more detail later in this 
paper. 

The IR Point Source Projector (IRPSP) is another 
stimulator sub-subsystem that presents a generated 
scene to the sensor. The primary function of the IRPSP 
is to accept digital input scenes produced by the SGS 
and to generate equivalent output scenes, in the form of 
in-band EO/TR energy, for projection into the entrance 
aperture of the UUT. The format of the scene input to 
the IRPSP from the SGS will be SGI Direct Digital 
Output for the Onyx2 (DD02), also known as the 
Onyx2 Digital Video Port (DVP). The IRPSP will also 
be capable of receiving scene input from the SIS in a 
DD02 format. Setup and control of the IRPSP will be 
managed by the SCS via the SGS to IRPSP interface. 
The IRPSP will consist of seven primary subsystems. 
These subsystems are the Control Electronics 
Subsystem (CES), Environment Control Subsystem 
(ECS), Infrared Emitter Subsystem (IRES), Mounting 
Platform Subsystem (MPS), Non-Uniformity 
Correction Subsystem (NUCS), Projection Optics 
Subsystem (POS), and Software Control Subsystem 
(SCS). 
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NEW CAPABILITIES 

Advances in Maritime Modeling 
A requirement for IRSS to test the U.S. Navy's 
AAS-44V FLIR system led to the introduction of a 
Maritime Combat Environment (MACE) modeling 
capability into IRSS. This involved the integration of a 
maritime thermal model derived from the U.S. Navy's 
IRENE model. The fact that the integration of this 
model was a smooth process is due to two main factors: 
cooperation between the developers of Infrared Electro- 
optical Engagement Model (IRENE) and CASI and the 
easily accessible OpenFlight format used by IRSS. The 
cooperation between the two parties allowed the work 
to be done in a minimal amount of time. Also, the 
expertise of the U.S. Navy development team allowed 
for great control of the way in which IRENE could be 
used for implementation. The API component of the 
MultiGen-Paradigm's Creator• program enables easy 
access to the OpenFlight format. Consequently, 
conversion of the IRENE file format to the 
IRSS-supported OpenFlight format was very 
straightforward. 

A major portion of the MACE effort involved the 
development of a method for the creation and rendering 
of the ocean background. The background is generated 
by a ray-tracing routine based on The Naval Research 
Laboratory's Kelvin and Random Ambient Sea Waves 
(KELSEA) model, which computes the source radiance 
of each square texel ina512x512 grid. These texels 
can have a size of lm or 5m on an edge, resulting in 
higher or lower resolution-radiance map textures. 
These radiance maps are then rendered by IRSS, which 
computes the atmospheric effects. 

The MACE team is currently seeking to identify 
sources of future funding for the continued 
development of the MACE capability. Some of the 
features earmarked for future work include the 
rendering of wakes, the creation of sea height maps for 
ocean backgrounds, and the inclusion of plumes in ship 
models. Figure 3 is a sample maritime image generated 
by IRSS. 

Advances in Terrain Simulation 
Terrain definitions are fully attributed faceted surface 
descriptions derived from Digital Terrain Elevation 
Data (DTED) augmented with cultural details such as 
roads, bridges, and buildings. The DTED data is used 
to create polygonal wire-frames representing terrain 
contour or shape. Terrain attributions include material 
properties, textures, and temperature specifications. 
Background detail (e.g., texture) at the sensor pixel 

level is represented by texture maps overlaid on larger 
terrain polygons. 

Figure 3 Example Maritime Scene 
(The ocean surface texture is lm resolution and a sea 
state of 2. The sensor altitude is ~1400m with a look 
angle oj"-10°. Ranges to the two ships are 740m and 
1560m.  White is hot.) 

Radiometrically-correct real-time simulation of realistic 
terrain requires three essential elements. First, a high 
resolution description of the physical properties of the 
terrain, both in terms of material composition and 
topography is needed. Second, high-fidelity models for 
the sensor and its physical environment must be 
employed. Finally, sophisticated algorithms must be 
employed to combine the models and the terrain 
description into rendered scenes accurately and in 
real-time. 

The IRSS effectively combines these three elements, 
providing a new level of realism to real-time sensor 
simulation. Since the terrain description is based only 
on its physical properties, it can be used to simulate the 
terrain regardless of the waveband(s) of the sensor 
being modeled, and correlation of different waveband 
images is easily accomplished. The description can 
also be used in conjunction with a thermal model to 
include realistic seasonal and diurnal effects. 
Radiometric accuracy is achieved through the use of 
accepted phenomenological models and advanced 
algorithms. Geospecific texturing results when 
correlated satellite imagery and digital elevation models 
for a specific region are used to create the 
terrain description. 
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Terrain Description and the Models 
Increased availability of satellite imagery, and the 
development of sophisticated image analysis 
techniques, has made the high-resolution description of 
terrain material composition a practical reality. 
Classification techniques are employed to determine the 
material or material mix of the terrain from satellite 
images on a texel-by-texel basis. A material code 
number is assigned to each texel, and all the codes for a 
specific patch of terrain are assembled into a 'material 
map', or, in the case of a material mixture being 
assigned to a texel, a 'material mix map'. The material 
codes are cross-referenced to a table that gives the 
pertinent properties of each material. The use of 
material mixtures has an advantage over using a single 
material per texel in that it enhances the level of detail 
in the terrain image and smoothes the transitions 
between regions of differing material types. 

Two types of topographic descriptions of the terrain are 
required. First, the effective utilization of computer 
graphics technology drives the need for the terrain to be 
described in terms of a triangular irregular network 
(TIN). A TIN representation is readily obtained from 
government-distributed digital elevation data by using 
commercially available Delaunay algorithms. 

The second type of topographic description required is 
at a higher, texel-level, resolution. This is necessary 
due to the sensitivity of the texel's radiance to its 
normal vector and its elevation. While the texel's 
source radiance is modeled as being independent of its 
orientation (i.e., Lambertian), its normal vector and 
elevation can have a significant impact on the source 
radiance, by effecting the texel temperature. The 
normal vector also determines how much sunshine, 
skyshine, and earthshine the texel reflects. The 
texel-level topographic data is readily derived from 
digital elevation data using standard interpolation and 
gradient estimation techniques. 

To efficiently store texel-level terrain data a new file 
format, material mix and topography (MMT), was 
developed for IRSS. This format stores the material 
mix data for each texel, as well as the texel-level 
topographic data, into a single file, which is then 
correlated to a TIN in the same manner as a normal 
texture. The topographic data takes the form of 
elevation, 2-D gradient, and cross-derivative samples at 
equally spaced posts. Elevation and normal vector data 
is then easily calculated at intermediate texel locations 
using bicubic interpolation. This bicubic representation 
itself reduces the storage requirement from 16 
bytes/texel to less than about 1 byte/texel. The post 
spacing is selected to approximate the resolution of the 

source data, which can result in further efficiency 
without adding any additional processing burden. 

The primary models employed by IRSS in terrain 
simulation are for sensor spectral response, atmospheric 
effects, and the determination of terrain temperatures. 
The user models the sensor spectral response during the 
scenario development process by simply entering 
sensor response values, and corresponding 
wavelengths, into a table. Atmospheric effects are 
modeled using the industry-standard atmosphere 
model, MODTRAN. The IRSS architecture is designed 
to facilitate the use of different thermal models, but 
currently uses only Terrain Temperature Model 
(TERTEM). 

Figure 4 Radiance Map Terrain 

Terrain-rendering Algorithms 
For maximum efficiency, the terrain-rendering 
algorithms are carefully designed to perform optimized 
pre-run-time calculations while also preserving 
accuracy. This non-real-time calculation consists of the 
generation of lookup tables and texture. The lookup 
tables are used to calculate attributes for terrain facet 
vertices that vary widely with the position of the sensor 
relative to points on the terrain. These attributes 
account for the effects of atmospheric attenuation and 
path radiance. The texture is used to account for a 
number of first principle physical effects including 
temperature variations, thermal radiation, and solar, 
skyshine, and earthshine reflections. The generation of 
this texture, called an adjusted radiance map, is 
expedited by first generating, and then using, lookup 
tables.   Once the lookup tables, and adjusted radiance 
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map, are precalculated, the real-time portion of the 
simulation can begin. The attributes of terrain facets 
within the field-of-view are calculated on a vertex-by- 
vertex basis, and the results sent to a rendering engine 
along with the specially-formulated texture. The IRSS 
has the capability to render scenes using either SGI 
graphics hardware, such as the InfiniteReality, or by 
using CASI's SRS, which is designed specifically for 
sensor applications. In either case, a unique rendering 
algorithm is employed to create the desired imagery 
with high accuracy. 

and gimbals must be emulated. Real-time sensor 
modeling must be performed to correctly model the by- 
passed sensor optics and electronics for the case of 
direct signal injection. Additionally, optical projection 
requires non-uniformity correction (NUC) of the 
thermal array. 
A Universal Programmable Interface (UPI) has been 
developed under the IRSS program to provide such 
functionality. Unlike custom solutions, the UPI 
provides a reconfigurable method for interfacing a wide 
range of UUTs through either direct injection or optical 
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To assess the accuracy of this new rendering technique, 
precise calculations of the apparent radiance of the 
terrain were compared to the results that would be 
obtained using the rendering technique, for a wide 
variety of sensor-to-terrain geometries and parameter 
variations. This showed that the error introduced by 
the algorithms used were generally a fraction of a 
percent, but that in certain extreme cases can grow to 
approximately 1%. 

Advances in Sensor Simulation 
IR/EO sensor system testing requires valid stimulation 
of the UUT to correctly determine the performance of 
the sensor system and processing algorithms. 
Assuming the scene generation system (SGS) has 
correctly modeled the target and background signature 
and atmospheric attenuation, other requirements exist 
for valid stimulation. A physical interface is required 
between the SGS and the UUT to properly reformat the 
data such that it can be introduced to the UUT either 
through the direct injection of the signals into the 
system's processing electronics or the projection of 
in-band scene radiance into the sensor's optical 
aperture. By-passed missing components such as gyros 

Figure 5 IR/EO HWIL Testing withaUPI 

projection. This flexible capability is achieved through 
the use of a core architecture that provides industry 
standard interfaces, coupled with rninimal custom 
interface hardware and reconfigurable software. The 
UPI provides the physical interface between an SGS 
and the UUT, performs sensor modeling, and emulates 
missing components. An illustration of using the UPI 
in hardware-in-the-loop (HWIL) sensor system testing 
is shown in Figure 5. 

Both current and notional sensors can be modeled with 
the UPI, providing system designers the capability to 
measure the effect on performance due to changes in 
sensor design. Additionally, the UPI can be used in 
applications requiring high speed general purpose 
image processing capabilities. 

The top-level architecture of the UPI is illustrated in 
Figure 6. 
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Figure 6 UPI Top-level Architecture 

Convolver 
For direct signal injection, the UPI must accurately 
model the modulation transfer function (MTF) effects 
of the bypassed sensor optics and electronics. The 
MTF is modeled through the convolution of a spatial 
kernel in the convolution subsystem (convolver). This 
kernel is generated offline through the use of the UPI 
sensor modeling software developed at CASI. An 
industry standard tool for IR sensor characterization 
and performance modeling (FLIR92), was chosen as a 
basis for this software. Based on the input sensor 
parameters, this tool provides the user with the ability 
to generate the convolution kernels that model the 
sensor MTF. The user can model the MTF of current 
and future sensors 

In the convolution subsystem, the over-sampled 
rendered scene is convolved with the MTF kernel, 
producing the image as seen by the sensor. Ideally, a 
static mapping between the sensor pixels and the scene 
pixels would exist. However, multiple factors can 
contribute to sensor pixel displacement from the 
perfectly rendered image to the correctly sensed image, 
including scene-rendering latency, optics-induced 
geometric distortion, and physical sensor jitter. In 
addition to convolution, the convolution subsystem 
handles these factors through displacement processing. 

In a closed-loop installed-systems test configuration, 
latency can occur between the time when positional 
data is received and the scene is rendered. Latency can 
create errors in x and y shift, and in rotation, which can 
consequently affect the ability to accurately test the 
system under test (SUT). This is a problem for both 
direct signal injection and projection. Therefore, the 
UPI performs latency compensation to extract the 
correctly located sensor image from within the 
oversized scene image. 

Within a real sensor, the optics generate geometric 
distortions in the sensed scene. Edges that are 
geometrically straight appear curved, an effect that is 
especially pronounced with wide FOV optics. Accurate 
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emulation of the optics-induced distortion may be 
required when performing direct signal injection since 
the optics are bypassed. If the SGS does not perform 
the geometric distortion, then the compensation can be 
performed by the UPI as an additional sensor effect 
modeled by the system. 

Sensors can experience physical jitter when mounted 
on a moving platform. For a scanning system, this 
could create small perturbations in the location of each 
successive scan line. If jitter affects the system 
performance, it should be accurately modeled. 
Assuming the jitter function can be mathematically 
modeled, it too can be handled by the UPI. 
Additionally, a variety of other user-defined 
mathematical displacement effects can be modeled. 

Pixel Processor 
A variety of noise sources and response non-linearity's 
that are present in sensors can affect performance. 
When performing direct signal injection, the sensor is 
bypassed. Therefore, these pixel effects are modeled, 
based on user specified sensor parameters, in the pixel 
processor to add to the validity of the installed systems 
test. 

Some of the pixel effects that have been modeled 
include conversion from radiance to photons, various 
noise sources, linear responsiveness and automatic gain 
control (AGC). 

The pixel processor utilizes a COTS circuit card 
assembly that contains general purpose processors. 
This board was originally designed for and used in the 
CASI SRS. Since the pixel effects are implemented as 
software executing on the general-purpose processors 
in the pixel processor, a wide variety of effects can be 
modeled in the UPI. User-defined effects, within the 
limits of the UPI, can easily be added with no change or 
cost in hardware. 

Optical projection can also benefit from the pixel 
processor. Gain and offset tables can be loaded in the 
resident memory and used for NUC 
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CONCLUSIONS 
The Infrared Sensor Stimulator (IRSS) is a cost- 
effective system that provides flexible, re-configurable, 
reproducible, and repeatable full test environments for 
evaluating Electro-opucal/Infrared (EO/IR) sensor 
systems during the concept, research, development, 
prototype, and test and evaluation phases. When 
employed as an integrated Installed System Test 
Facility (ISTF) element, it is a valid and verifiable test 
and evaluation risk reduction tool that optimizes use of 
costly range testing. The IRSS sensor modeling 
capability contributes to the development of systems 
and sensor, and engineering model development 
(EMD) performance effectiveness evaluation. 

The scene-generation component has successfully 
completed its Spiral 4 development and the software 
has been delivered to the Navy and Air Force for 
evaluation. The signal injection component has 
completed preliminary design review, and the infrared 
point source projection component has completed the 
critical design review for both systems. Final 
IRSS/facility integration is scheduled for third. Quarter 
Government Fiscal Year (GFY) 2000, and will occur at 
the Air Combat Environment Test and Evaluation 
Facility (ACETEF), Naval Air Warfare Center - 
Aircraft Division (NAWC-AD), Patuxent River, 
Maryland and the Avionics Test and Integration 
Complex (ATIC), Air Force Flight Test Center 
(AFFTC), Edwards AFB, California. The system's 
Fully Operational Capability (FOC) completion is 
scheduled for the fourth quarter of GFY 2000. 
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ABSTRACT 

Infrared Electro-optical (IR/EO) sensor system testing 
requires valid stimulation of the unit under test (UUT). 
Prerequisite is a scene generation system (SGS) that 
produces imagery that correctly models the 
target/background signature and atmospheric attenuation. 
A physical interface is required between the SGS and the 
sensor UUT to properly reformat the data such that it can 
be introduced to the UUT either through the direct 
injection of the signals into the system's processing 
electronics, or the projection of in-band scene radiance 
into the sensor's optical aperture. A Universal 
Programmable Interface (UPI) for signal injection to the 
sensor is being developed by Comptek Amherst Systems, 
Inc (CASI) under contract to the Air Force Flight Test 
Center (AFFTC) at Edwards AFB, with additional 
funding support from the Naval Air Warfare Center - 
Aircraft Division (NAWC/AD) at Patuxent River, 
Maryland. Additionally, the UPI will perform accurate, 
real-time sensor modeling, which is a key element in the 
image signal injection pipeline. Unlike custom interfaces, 
the UPI is reconfigurable, providing the capability to 
interface to a wide range of sensor systems. 

This paper will discuss the sensor modeling capabilities of 
the UPI and the supporting software and hardware. Sensor 
modeling capabilities include image blurring associated 
with the sensor's modulation transfer function (MTF) and 
pixel effects. A sensor modeling and analysis software 
tool, based on FLIR921, will be discussed. A technique 
for accurately performing latency compensation and 
modeling geometric distortion, physical sensor jitter, and 
other user-specified effects will also be discussed. 

Keywords: 
Simulation 

Sensor Modeling,  Infrared,  Electro-Optic, 

1. INTRODUCTION 

The IR/EO sensor system testing requires valid 
stimulation of the UUT to correctly determine the 
performance of the sensor system and processing 
algorithms. In addition to correctly modeled 
targefc^ackground signature and atmospheric attenuation, 

other requirements exist for valid stimulation. A physical 
interface is required between the SGS and the UUT to 
properly reformat the data so that it can be introduced to 
the UUT either through the direct injection of the signals 
into the system's processing electronics, or the projection 
of in-band scene radiance into the sensor's optical 
aperture. By-passed/missing components such as gyros 
and gimbals must be emulated. Real-time sensor 
modeling must be performed to correctly model the by- 
passed sensor optics and electronics for the case of direct 
signal injection. Additionally, optical projection requires 
non-uniformity correction (NUC) of the thermal array. 

A UPI is being developed to provide such functionality. 
Unlike custom solutions, the UPI provides a 
reconfigurable method for interfacing a wide range of 
UUTs through either direct injection or optical projection. 
This flexible capability is achieved through the use of a 
core architecture that provides industry standard 
interfaces, coupled with reconfigurable software and 
minimal custom interface hardware. The UPI provides 
the physical interface between an SGS and the UUT, 
performs sensor modeling, and emulates missing 
components. Both existing and notional sensors can be 
modeled with the UPI, providing system designers the 
capability to measure the effect of possible sensor 
characteristic design changes on performance. 
Additionally, the UPI can be used in applications 
requiring high-speed general purpose image processing 
capabilities. 

The top-level architecture of the UPI is illustrated in 
Figure 1-1. 
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Figure 1-1. UPI Top-level Architecture 
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The input scene is blurred in the convolver. In parallel, 
the convolver performs latency compensation. The pixel 
processor applies pixel effects, including noise and linear 
responsivity. Additionally, the pixel processor provides 
NUC capabilities for optical projection. 

Hardware and sensor requirements have been presented in 
the past.2, 3 This paper focuses on the sensor modeling 
capabilities supported by the UPI, both in software and in 
hardware. Section 2 addresses the software used to model 
image blurring due to the sensor's MTF, and pixel effects. 
A sensor modeling and analysis software tool based on 
FLIR92 is used to generate the convolution kernel and 
simulate the pixel effects. Section 3 provides more detail 
on MTF modeling. Section 4 discusses pixel 
displacement processing, a technique that is used to 
accurately perform latency compensation and to model 
other sensor effects, including geometric distortion, 
physical sensor jitter, and various additional user-defined 
effects. Section 5 discusses pixel effects modeling. 
Conclusions are presented in Section 6. 

the kernels with modifications to the sensor parameters. 
Therefore, the user can easily model numerous existing 
sensors as well as potential future designs with no cost in 
hardware. Multiple sets of convolution kernels can be 
generated and stored for a given sensor system. This 
capability supports emulation of a multiple field-of-view 
(FOV) FLIR. When the FLIR's FOV is changed during a 
simulation run, the convolution subsystem will load in the 
set of kernels generated for the new FOV. Slight 
variations in each sensor's MTF in a multiple aperture 
system can also be emulated by generating a specific 
kernel for each sensor. Unique kernel sets can be 
generated for each sensor with small changes in the 
sensor parameters. Although FLIR92 is used as a 
baseline for the UPI sensor modeling tool, other more 
recent models such as NV-THERM can be incorporated 
with FLIR92 in the future. Due to the malleability of 
software, future sensor modeling refinements can be 
implemented with no additional hardware cost. 

3. MTF MODELING 

2. SENSOR MODELING SOFTWARE 

A key capability requirement for the UPI is to accurately 
model the sensor UUT characteristics, including MTF and 
pixel effects. The sensor MTF is the frequency 
representation that describes image blurring. Pixel effects 
include various noise sources and pixel nonuniformity. 
These effects are emulated in hardware components of the 
UPI; the convolution and pixel processing subsystems, 
respectively. Off-line software tools are necessary to build 
the required inputs for these subsystems. 

Software tools are currently being developed by Comptek 
Amherst Systems, Inc. (CAS) for sensor modeling. 
FLIR92, an industry standard tool for IR sensor 
characterization and performance modeling, was chosen 
as a basis for this software. A graphical user interface 
(GUI) has been developed that provides the capability for 
a user to enter sensor parameters matching those used as 
input by FLIR92. The UPI sensor modeling tool also 
supports both the import and export of FLIR92 files to 
provide file compatibility with this model. After the 
appropriate parameters are specified, this tool provides 
the user with the ability to generate the convolution 
kernels that model the sensor MTF. The details behind 
kernel generation are provided later in this paper. 

Software-generated sensor modeling data files add 
flexibility to the system. The tool's present functional 
capabilities provide the user with the ability to regenerate 

For direct signal injection, the UPI must accurately model 
the MTF effects of the by-passed sensor optics and 
electronics. The MTF is modeled through the 
convolution of a spatial kernel in the convolution 
subsystem. This kernel is generated off-line through the 
use of the UPI sensor modeling software. Similar to 
FLIR92, the overall system MTF is modeled as the 
combination of component MTFs. Components include 
diffraction MTF, geometric blur MTF, detector spatial 
MTF, detector temporal MTF, Focal Plane Array (FPA) 
integration MTF electronics low-pass MTF, etc. Each 
component's MTF is mathematically generated based on 
the sensor parameters, using the same equations as 
FLIR92. However, an exception does exist with the 
electronics low-pass MTF. FLIR92 only provides the 
magnitude of this MTF, but phase information is also 
needed to build a convolution kernel. Since the 
component MTFs are built in the frequency domain, 
combination is performed by multiplying them together. 
The software will additionally permit the input of 
measured MTF components in either the frequency or the 
spatial domain. If a component is specified in the spatial 
domain, it will be converted to the frequency domain 
through a Fast Fourier Transform (FFT). 
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The convolution subsystem utilizes a spatial domain 
convolution kernel. Therefore, after the MTF is 
generated, it is converted to the spatial domain through an 
inverse FFT. The MTF is generated using a large array so 
that it can be accurately represented across multiple 
frequencies. This approach results in a large convolution 
kernel. However, practical UPI implementation 
constraints dictate that the kernel size be limited to 16 x 
16 due to computational cost. Therefore, the kernel is 
truncated to the desired size and quantized to the 
appropriate fixed-point resolution. 

Although truncating the kernel lowers the computational 
cost, it can lead to inaccuracies and aliasing. The UPI 
sensor modeling tool provides the capability for the user 
to vary the kernel size and display the effects on the 
modeled MTF of truncation. An example comparison is 
displayed in Figure 3-1. The first image represents the 
2D MTF prior to truncation of the kernel. The post- 
truncation MTF was created by transforming the 
truncated kernel back into the frequency domain through 
an FFT. Clearly, the truncated kernel does not perfectly 
reproduce the MTF modeled with a nontruncated kernel. 
The ringing at higher frequencies can lead to aliasing 
distortions. However, most of the ringing is along the 
horizontal and vertical axes with only minor ringing along 
the diagonals. It should be mentioned that these images 
were raised to the 0.25 power for illustrative purposes; the 
ringing isn't as pronounced as displayed. 

Figure 3-1. UPI MTF. b) Post-truncation, raised to 0.25 

The user also has the option to display the MTF absolute 
differences, and/or use log scales to fully analyze the 
differences due to truncation. Although differences will 
exist, this tool can be used to help determine the best 
tradeoff between kernel size and error. Convolution is 
performed on an over-sampled input scene. Therefore, 
the over-sampling factor can additionally be adjusted and 
its impact can be analyzed. 

4. PIXEL DISPLACEMENT PROCESSING 

Figure 3-1. UPI MTF. a) Pre-truncation, 

In the convolution subsystem the over-sampled rendered 
scene is convolved with the MTF kernel, producing the 
image as seen by the sensor. Ideally, a static mapping 
between the sensor pixels and the scene pixels would 
exist. However, multiple factors can contribute to sensor 
pixel displacement from the perfectly rendered image to 
the correctly sensed image, including scene rendering 
latency, optics induced geometric distortion, and physical 
sensor jitter. The following discussion describes how 
these effects can be modeled in the UPI through pixel 
displacement processing. Accuracy concerns will be 
addressed including a method for subscene pixel 
mapping. 

Displacement processing requires a mapping from each 
sensor pixel into scene space. Each map entry contains an 
x, v pair specifying where this sensor pixel is centered, in 
scene coordinates. During convolution, the kernel is 
applied to the location in the scene based on the map 
entry for the current sensor pixel. 
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An initial map must be generated which is subsequently 
modified by displacement processing. This map can 
either be stored explicitly or expressed as a mathematical 
function. An example map is shown in Figure 4-1 in 
which the sensor pixels are mapped into the center of the 
generated scene. The first image is the input scene image 
with the overlaid squares representing a subsampling of 
the displacement map entries. The area covered by the 
sensor is less than that covered by the scene to allow for 
the displacement processing. The second image 
represents the output scene image produced by applying 
the convolution kernel at entries represented by the 
displacement map. If there were no pixel displacement, 
the initial map would be used directly for convolution 
processing. However, modifications to the map are 
necessary to model the above-mentioned effects. 
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Figure 4-1. a) Initial Sensor to Scene Pixel 
Displacement Map 

Figure 4-1. b) Initial Sensor to Scene Pixel 
Displacement Map 

4.1 Latency Compensation 

In a hardware-in-the-loop (HWTL) system, latency can 
occur between the time when positional data is received 
and when the scene is rendered. Latency can create errors 
in x and y shift, and in rotation, which can consequently 
affect the ability to accurately test the system under test 
(SUT). Therefore,    the    UPI    performs    latency 
compensation to extract the correctly located sensor 
image from within the oversized scene image. This can 
be accomplished by mathematically rotating and shifting 
the x, y pairs in the displacement map. Rotation is 
performed through the following equations: 

x' = *cos(0)-j;sin(0) 

y' = xsin(8)+,ycos(0) 
(1) 

where x, y are the current coordinates stored in the 
displacement map; x', y' are the new coordinates and theta 
is the angle of rotation. Care must be taken to ensure that 
the rotation takes place around the boresight of the sensor. 
The implementation may require a shift operation to 
accommodate this requirement. 

Image shift is calculated as: 

x' = x + dx 

y' = y+dy 
(2) 

where x, y are the current coordinates stored in the 
displacement map; x', y' are the new coordinate; and d„ dy 
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are the shifts in x and y, respectively, 
shift can be combined with this shift. 

Any postrotation 

Figure 4-2 shows the result of rotation and shift of the 
displacement map coordinates. It should be noted that the 
clockwise rotation of the displacement map yields a 

Figure 4-2. Rotated and Shifted Displacement 
Map 

counter-clockwise rotation because the displacement map 
defines a mapping from the sensor to the scene, i.e., this is 
where the sensor image is extracted from the scene. 
Similarly, shifts of the displacement map lead to shifts in 
the opposite direction of the resultant sensor image. 

4.2 Geometric Distortion 
Within a real sensor, the optics can generate geometric 
distortions in the sensed scene. Edges that are 
geometrically straight can appear curved, an effect that 
can be especially pronounced with wide FOV optics. 
Accurate emulation of the optics-induced distortion may 
be required when performing direct signal injection since 
the optics are by-passed. If the scene generation system 
(SGS) does not perform the geometric distortion, then the 
compensation can be performed by the DPI as an 
additional sensor effect modeled by the system. 

Two common geometric distortions are pincushion and 
barrel effects. In both cases, there is a mapping between 
the true off-axis distance and the imaged off-axis 
distance. A function that generates these effects in polar 
coordinates is: 

P'=M°I (3) 

where p is the off-axis distance; k is a scaling factor; a is 
the distortion exponent; and p' is the resultant off-axis 
distance. The distance, p, is multiplied by the scaling 
factor, k: setting k equal to one over the maximum 
distance normalizes this factor to between 0 and 1. The 
distortion exponent, a, determines both the type and the 
amount of distortion. A positive a generates a 
pincushioning of the displacement map, while a negative 
a generates a barreling of the map. A zero valued a 
creates no distortion because any number raised to zero 
equals one. The magnitude of a determines the amount 
of distortion. An example displacement map after 
distortion is depicted in Figure 4-3. It should be noted 
that a pincushion displacement map yields a barrel effect 
image, and a barrel distortion map yields a pincushioned 
image. This is the result of the displacement map 
defining the mapping from the sensor to the scene. In the 
case of the pincushion displacement map, the inward 
bowing in scene coordinates of the regularly spaced 
sensor pixels creates an outward bowing of the resultant 
image. 

A performance gain can be achieved if the geometric 
distortion is precomputed for the specified UUT and 
stored in a displacement map.   This is used as an initial 
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displacement   map   prior   to   roll   and   shift   latency 
compensation. 
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Figure 4-3. Pin-Cushioned Displacement Map 

4.3 Other Displacement Functions 

Sensors can experience physical jitter when mounted on a 
moving platform. For a scanning system, this could lead 
to small perturbations in the location of each successive 
scan line. If jitter affects the system performance, it 
should be accurately modeled. Assuming the jitter 
function can be mathematically modeled, it too can be 
handled by the UPI. Potential jitter models can include 
sinusoidal or random per-scan-line or per-pixel effects. 

Precomputed jitter offset values are sent to the 
convolution subsystem and added into the pixel 
displacement processing. 

Displacement processing permits the implementation of 
any user-defined function that yields new x, y pairs based 
on the current x, y. Such user-defined functions can be 
combined with the other displacement effects. However, 
care should be taken in the order that the functions are 
executed. For example, functions that are not rotationally 
invariant must be applied before the rotational latency 
compensation function is applied. Additionally, the 
computational complexity of the function should be 
considered because these operations are performed on a 
per-sensor pixel basis. 

4.4 Displacement Accuracy 

The IR/EO system signal processing algorithms can be 
sensitive to small pixel intensity variations. This 
technique as described above allows for displacements 
with scene pixel accuracy; however, this may not be 
sufficient depending on the application. A solution is to 
increase the over-sampling factor used in scene 
generation. This process will increase the subsensor pixel 
accuracy, but it is limited by the computational resources 
of both the SGS and UPI. Therefore, a method is 
presented for displacements with subscene pixel accuracy. 

Although convolution is often meant to blur objects, it is 
typically not intended to displace an object by a fractional 
scene pixel. However, subscene pixel displacement is 
desirable for displacement accuracy. Therefore, the goal 
is to generate a set of kernels that intentionally produce 
controlled subscene pixel displacements. A kernel is 
generated by sampling the point spread function (PSF) at 
intervals equal to the scene pixel width. Since the PSF 
can be considered a continuous function, it can be 
resampled starting at any chosen subscene pixel offset, 
allowing for control of subscene pixel displacements. 

Ideally, an infinite number of kernels could be generated 
to account for the infinite number of subscene pixel 
offsets, but this obviously is not feasible. Therefore, an 
analysis was performed to determine how the number of 
kernels, nfe, affects the maximum error due to 
displacement. Two identical signals were generated: the 
first, the baseline, was generated with a subscene pixel 
shift; and second, signal without. A convolution kernel 
was chosen for the second signal shifted to match the shift 
between the two signals. Convolution was performed on 
both signals and the maximum difference between the 
resultant  signals  was  calculated.     This  process  was 
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repeated with a varying number of kernels and a plot of 
the maximum error was generated as shown in Figure 4-4. 
The subscene pixel resolution is an inverse function of nk; 
therefore, the error dropped off inversely with an increase 
in nk as expected. Although the decrease in error is 
limited by an asymptote, it should be noted that this is 
maximum error calculated over a wide range of subscene 
pixel offsets. Some offsets produce less error for the 
given nk, but none produce more than the plotted results. 

•^ i-        T- *- CM 

Number of Kernels (in one dimension) 

Figure 4-4. Maximum Error as a Function of 
the Number of Kernels 

5. PIXEL EFFECTS MODELING 

A variety of noise sources and response nonlinearities that 
are present in sensors can affect system performance. 
When performing direct signal injection, the sensor is 
bypassed. Therefore, these pixel effects are modeled, 
based on user specified sensor parameters, in the pixel 
processing subsystem to add to the validity of the HWIL 
test. 

Some of the pixel effects that have been modeled include 
conversion from radiance to photons, various noise 
sources, linear responsivity, and automatic gain control 
(AGC). The convolution subsystem outputs imagery in 
radiance units. Since most sensors measure incident 
photons, a conversion factor is applied. This is followed 
by the introduction of various noise sources, both 
multiplicative and additive. Linear responsivity models 
the system's analog-to-digital (A/D) converter by 
converting the photon count to fixed point units 
measurable by the A/D. Finally, the AGC normalizes the 
display to the intensity range of the image. 

Since the pixel effects are implemented as software 
executing on the general-purpose processors in the pixel 
processor, a wide variety of effects can be modeled in the 
UPI. User-defined effects, within the limits of the UPI, 
can easily be added with no change or cost in hardware. 

Optical projection can also benefit from the pixel 
processor. Gain and offset tables can be loaded in the 
resident memory and used for NUC. 

Figure 5-1 displays an example of pixel effects modeling. 
The first image is that passed in from the output of the 
convolver. Some pixel effects were applied, resulting in 
the second image. 

Figure 5-2. Pixel Effects Example^. 
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ABSTRACT 

The Office of the Secretary of Defense (OSD), Central 
Test and Evaluation Investment Program (CTEIP) is 
tasked with providing a coordinated process for making 
joint investments in defense test & evaluation (T&E) to 
offset the challenges presented by declining investments 
in test assets and increasing test requirements. Under 
CTEIP sponsorship, the Navy and Air Force are jointly 
developing three Joint Installed System Test Facility 
(JISTF) enhancements that are based on dynamic virtual 
reality simulation technology. The three enhancements 
are the Infrared Sensor Stimulator (IRSS), Generic Radar 
Target Generator (GRTG), and Joint Communications 
Simulator (JCS). These enhancements will provide each 
ISTF with the capability to simultaneously test multiple 
avionics and sensor subsystems installed on an aerospace 
System Under Test (SUT) (e.g. manned and unmanned 
aircraft) in a ground test environment. The ISTF 
enhanced test capabilities will be used to evaluate multi- 
sensor data fusion/correlation and subsystems' 
interoperability for Infrared Sensors, RADAR, GPS, and 
Communications and Data Link subsystems. 

The IRSS program1 was previously briefed at the 1997 
and 19982 GTM&V Conference. This paper addresses 
the integration of a maritime modeling capability into the 
IRSS Scene Generation Subsystem (SGS). 

The IRSS system is designed to function primarily on 
commercial-off-the-shelf (COTS) hardware such as the 
Silicon Graphics (SGI) Onyx2® InfiniteReality graphics 
computer. The symmetric multiprocessing capability of 
the SGI Onyx2 computer gives the IRSS system a multi- 
channel capability for the simulation and rendering of 
multi-spectral infrared images at high frame rates. 

As part of the Infrared Sensor Stimulator (IRSS) 
development project, Comptek Amherst Systems Inc. is 
tasked with incorporating the capability to render infrared 
simulations of the Maritime Combat Environment 
(MACE).    To achieve the requirements associated with 

the modeling and rendering of surface ships, and the 
dynamic nature of the ocean background, Comptek 
Amherst has integrated modified portions of the US 
Navy's maritime model IRENE within the MACE 
structure. As a result, IRSS has been provided with the 
unique capability of rendering surface ships and an ocean 
background in a real-time high-fidelity IR simulations. 

This paper will outline the basic process of the integration 
of the necessary reworked portions of IRENE into IRSS 
and several of the challenges, issues, and solutions that 
accompanied this task. 

KEYWORDS: Installed Systems Testing, Infrared 
Sensors, Scene Simulation, Maritime IR Model 

1. INTRODUCTION 

When creating the IRSS, it became apparent that one of 
the first sensors to be tested with the system would be the 
US Navy's AAS-44V FLIR system. In order to ensure 
that the modeling and simulation capabilities of IRSS 
would be capable of simulating the type of environment 
in which the AAS-44V would be used, a requirement was 
issued for a comprehensive Maritime Combat 
Environment (MACE) capability to be implemented. 
There were three main phases to the introduction of a 
MACE capability into IRSS. 

First, the models scheduled for integration into IRSS had 
to be evaluated for their applicability to MACE. When 
these models were found to be overall lacking in 
capability, the second phase became the selection of a 
suitable model, or set of models, for integration. Third, 
the selected models had to be integrated into the system. 

After briefly reviewing the first two steps outlined above, 
the paper will focus on the third phase of this process: the 
actual integration of the selected model(s). 
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2. IRSS MODELING CAPABILITY 
EVALUATION 

When examining whether or not the capabilities of IRSS 
meet the challenges of MACE, an examination of some of 
the seminal features of the maritime environment must be 
made. 

The signature modeling of a surface ship can be 
adequately described by a one dimensional thermal 
model. This is due mainly to the fact that most of the 
outside surface of a ship (hull and superstructure) are 
composed of relatively thin plates. This fact is made even 
more relevant by the fact that this plate thickness is very 
small compared to the exposed surface area of these 
plates. Therefore, thermally, the plates can be treated as 
one-dimensional, with almost all of the heat transfer being 
done perpendicular to the main faces of the plates 
(internal and external). 

The speed of a ship is comparable to most wind speeds 
encountered. This, coupled with the open-air 
environment of the ocean, make an accurate atmospheric 
convection calculation important for a good maritime 
signature model. Additionally, there are many regions of 
the ship which have very different temperatures during 
normal operation. The ability to model these "hot 
regions" within the structure of a ship is critical to 
correctly modeling the thermal signature of the ship. 

The water environment also presents a very unique and 
special background for a thermal model. As the 
background provides a significant amount of radiance to a 
ship, the background must be modeled as accurately as 
possible. 

The ground vehicle model PRISM and the aircraft model 
SPIRITS are scheduled for integration into the IRSS. 
These two models were chosen because of their 
widespread acceptance in the IR modeling community, 
and their satisfactory performance in regard to 
functionality. Both models excel in their respective areas 
of modeling, however they are not suitable for MACE. 
PRISM is a detailed 3D thermal signature model used for 
temperature/radiance calculations of ground-based 
vehicles. In this modeling realm, a three-dimensional 
conduction/convection model is necessary due to the thick 
nature of the plates making up the exterior of the vehicle. 
While this feature is certainly not something that is bad in 
a one-dimensional thermal situation, it is unnecessary. 

PRISM does not account for the background environment 
in a way satisfactory for the maritime environment. The 
method it employs is one of a general background 
radiance, which is insufficient when dealing with the 
large effects of solar glint on the sea surface. 

SPIRITS is also not up to the maritime modeling task. 
The   model   deals   with   aircraft  flying   through   the 

atmosphere, not a condition where wind-driven thermal 
convection is critical. Consequently, the convection 
modeling capability of SPIRITS is somewhat lacking. 
Also, the manner in which internal thermal regions are 
handled is not very transparent, a key issue as the feature 
is very important to maritime modeling. 

Given these considerations, it was decided that 
investigation of existing maritime signature models had to 
be undertaken to determine whether an existing model 
could be incorporated into IRSS, or if a new model would 
have to be developed from scratch. 

3. SELECTION OF A MARITIME MODEL 

The investigation of existing maritime models led to two 
main candidates upon which to base the modeling 
capability: NTCS/SHIPIR and IRENE. The former was 
created and maintained by W.R. Davis Engineering, Ltd. 
Of Ontario, Canada. This model not only calculates the 
thermal and radiometric properties of a ship in its 
environment, but it also is capable of simulating complete 
missile engagements between the ship and a variety of 
anti-ship missiles. The features important for a complete 
maritime model are included in this model, making it an 
excellent candidate. In addition, this model has been 
accepted as the standard NATO maritime model under 
RSG.5. 

The second model considered, IRENE, is a model 
developed and maintained by the US Navy at its Naval 
Surface Warfare Center (NSWC) Carderock Division in 
Bethesda, Maryland. It also contains the salient features 
necessary in a signature model for applicability to the 
maritime environment 

Both models are excellent candidates, and either model 
would have been sufficient to accomplish the MACE 
modeling goals. The decision was based on integration 
ease and the fact that the time available for the work to be 
done was relatively short. While there would not have 
been a problem working with the team at W.R. Davis, 
there would have been more issues to resolve with 
SHIPIR than with IRENE. Also, as IRENE is a US Navy 
model developed under a US Navy contract, greater 
control was available to influence the integration effort. 

4. INTEGRATION 

4.1 INTEGRATION SCHEME 

4.1.1 Phase I 

The actual integration scheme for MACE was a three-part 
effort (see figure 1). The first phase involved most of the 
work on the creation of the new signature module code 
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itself, and was carried out at NSWC Carderock. A new 
thermal signature module, derived from IRENE, was 
written for IRSS. In the past, the model had accepted 2 
files for each ship it processed - a geometry file and a 
separate file containing the radiomefric properties of the 
paints and materials used on the ship. For this effort, 
these two files were concatenated into one file. This work 
made the information needed by IRSS more accessible. 

The second part of this phase was to make background 
data (ocean surface radiance values) available to IRSS. 
This involved the implementation of a way to make the 
background radiance calculations of the background 
model consistent with the data used to thermally process 
the ship. 

A major concern was the method to be used in rendering 
the ocean background. One feature of most maritime 
models is that while the ocean surface would be 
accounted for in the radiometric calculations, the 
information would not be retained for rendering. This 
background information is needed by IRSS. 

A separate ocean surface background model based on the 
model KELSEA, developed by the Naval Research 
Laboratory, is used for rendering backgrounds. This 
model uses a ray-tracing algorithm to determine the 
apparent radiance of the sea surface based on look angle, 
sun position and observer altitude. This model was 
modified to write out the sea surface radiance texture 
maps (SSRTMs) which are used by IRSS. 

The actual rendering of the background is done through 
the use of the IRSS radiance map rendering capability. 
The radiance of the ocean surface is calculated in a square 
grid fashion. The squares comprising this grid can be 
either lm or 5m on edge and are 512 x 512 grids. The 
resultant radiance maps are therefore 512m x 512m or 
2560m x 2560m in size, respectively. These grids are then 
tiled across a flat-polygon ocean surface background 
appropriately, depending on the size of the background 
used. 

MACE 
Thermal 
Signature 
Module 

h 

Converter from 
.sur to .IRSS.flt w 

.sur output file 

h 

IRSS material 
file w 

h 

Converter from 
raw SSRTM to 
IRSS radiance 

map 

h 
Sea state info 
raw SSRTM w w 

Figure 1. Basic 1RSS/MACE Integration Scheme. 

4.1.2 Phase II 

As shown in figure 1, the next part of the overall effort 
(carried out at Comptek Amherst Systems in Buffalo, 
NY) involved the creation of a file converter. The 
converter extracted the necessary information from the 
.sur files (the modified IRENE output file) and entered 
them into .IRSS.flt (OpenFlight) format, which is the 
three-dimensional geometry format used in IRSS. This 
work was facilitated by the use of the Application 
Programmable Interface (API) provided with Multigen- 
Paradigm's modeling program.  The API allows for fast 

and easy access to the OpenFlight file format, making the 
conversion a relatively simple task. 

Also part of Phase II was the conversion of the radiance 
data produced by the KELSEA-based sea surface model 
into a format usable by IRSS. The radiance data was in a 
16-bit, 256 color grayscale format, which was converted 
into Silicon Graphics .bw texture format. This texture 
was then rendered as a radiance map, with atmospheric 
attenuation and path radiance calculated on a pixel-by- 
pixel basis. 

A related task was the creation of a material file for IRSS, 
containing the radiometric properties of the paints and 

87 



materials of the ship to be rendered As previously stated, 
IRENE at one point used a separate file for the materials 
used on the ship. This was incorporated in the actual 
geometry file of the ship itself. This file is processed by 
the IRSS converter, which in turn creates a geometry file 
in OpenFlight format and a material file for each material 
and/or paint used on the ship. 

4.1.3 Phase III 

Phase III involved some of the first work in the project, 
but it was actually finished last. It consisted of the 
complete rewriting of the IRENE thermal module, making 
it, in effect, a completely new thermal model for inclusion 
in IRSS. 

4.1.4 Phase IV 

Not depicted in figure 1 is Phase IV of the integration 
effort. This part mainly involved the creation of a user- 
friendly front-end for MACE. The current method of user 
interaction with the MACE thermal signature module is a 
call through a UNIX command-line script. This script 
processes the desired atmospherics and environmental 
information, selects the ship model to be processed, and 
calls the actual signature module. While workable, a 
more user friendly graphical interface has been proposed 
for the fourth integration stage. Currently, it is considered 
a future upgrade issue. It is important to note, however, 
that there is no functionality lost by not completing this 
work, as it is basically an ease-of-use issue. 

4.2 EXECUTION OF INTEGRATION SCHEME 

The work at NSWC Carderock (Phases I and III) went 
very well. The Carderock team stayed in close contact 
with the Comptek Amherst team, making it easy for any 
issues that arose during the work to be resolved quickly 
and to everyone's satisfaction. This close cooperation led 
to the saving of a great deal of time and effort, as little 
time was spent doing work that was later thrown away. 
This made the reworking of the input file format and 
creation of the new signature module very smooth. 

Phase II was similarly straightforward for the Comptek 
Amherst Systems team. The task of creating the file 
converter, as mentioned above, was completed very 
quickly due to the fact that the MultiGen's Creator Plug- 
In Tools API gives the programmer fast and easy access 
to the OpenFlight format. 

5. RESULTS 

Depicted in figures 2 through 7 are some examples of 
images rendered by IRSS using MACE-generated ships 
and ocean surface textures. The exact details of each 
screen capture's contents are given in the caption for each 
For all images, the sensor is a 256 x 256 staring LWIR 
array with a 10° x 10° field of view, and white is hot. 

In general, the results are very satisfactory. The ships 
displayed in the images are actually two renderings of the 
same ship facing in nearly opposite directions. This was 
done to illustrate (within the limitations of graphical 
reproduction) the effect of sun position on thermal 
signature of the ship. The atmosphere used in the 
rendering is a clear atmosphere - therefore there is little 
attenuation of the targets and ocean surface texture as a 
function of distance from the sensor. 

A few important notes should be made about the ocean 
surface texture. Each texture is created based on a single 
look angle. Naturally, during the course of a scenario, the 
look angle of the sensor can change dramatically. This 
limitation is an important one, as it places a limit on the 
realism of the ocean background. A dynamically updated 
series of textures is a possibility for future capability, as 
this would increase the accuracy of the rendered image. 
This need can be through appropriate extensions to the 
texture paging scheme of IRSS. 

A fact worth mentioning is the almost uniform appearance 
of the ships in these figures, aside from the solar heating. 
There was no attempt to create accurate hot part 
information for these particular ships as sensitive data 
would be needed for such a task. Tests indicate expected 
results when using realistic heated compartments in a ship 
model. 



Figure 2. This image is a snapshot of the ocean surface texture at lm resolution and a 
sea state of 2. The sensor altitude is ~ 1200m with a look angle of-10°. 

Figure 3. The ocean surface texture is lm resolution and sea state 2. The sensor 
altitude is ~1225m with a look angle of-5°. Ranges 

to the two ships are 2650m and 3600m. 

Figure 4. The ocean surface texture is lm resolution and sea state 2. The sensor 
altitude is ~1365m with a look angle of -5°. Ranges 

to the two ships are 1200m and 2150m. 
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Figure 5. The ocean surface texture is lm resolution and sea state 2. The sensor 
altitude is ~1400m with a look angle of-10°. Ranges 

to the two ships are 740m and 1560m. 

Figure 6. The ocean surface texture is 5m resolution and sea state 2. 
altitude is ~1225m with a look angle of-5°. Ranges 

to the two ships are 2650m and 3600m. 

The sensor 
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Figure 7. The ocean surface texture is 5m resolution and sea state 2. The sensor 
altitude is ~1365m with a look angle of-5°. Ranges 

to the two ships are 1200m and 2150m. 

6. SUMMARY AND FUTURE 

Many of the important issues involved in the integration 
of a Maritime Modeling Capability into IRSS have been 
reviewed. There are several lessons which can be drawn 
from this success, as well as some important points for 
further work and improvement. 

The use of MultiGen Paradigm's Creator for 3D 
modeling by IRSS allowed the conversion of the .sur 
geometry format to be extremely smooth. This was 
critical due to the fact that the entire project, from initial 
funding to final implementation, lasted only 5 months. 

Another important point relates to the cooperation 
between the developers of IRENE and Comptek Amherst 
Systems. They were available and willing to participate in 
the effort. The work would have been far more difficult, 
and certainly not nearly as straightforward, without their 
participation. With their knowledge of the workings of an 
already validated maritime model, the work to be done in 
the creation of the new signature module was completed 
very quickly. 

There is still room for improvement in the MACE 
modeling capability of IRSS and studies in this direction 
have already been undertaken. Features earmarked for 
future effort are the creation of a wave-height algorithm 
for sea surface rendering and the inclusion of plumes on 
the ships themselves. These features have been identified 
as the main enhancements required to bring the MACE 
modeling effort closer to its desired level of functionality. 
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DEGRADING IMAGES FOR REALISM 

R. M. Geatches and G. J. Bishop, 
Sowerby Research Centre, British Aerospace, 

Filton, Bristol, BS34 7QW, England. 

ABSTRACT 

The Sowerby Research Centre (SRC) based at Filton, 
Bristol is responsible for developing infra-red signa- 
ture prediction capabilities for it's parent body, British 
Aerospace. To achieve this, the SIRUS code has been 
developed and used on a variety of projects for the last 
decade. SIRUS is capable of providing infra-red predic- 
tions on air breathing and rocket motor propelled vehi- 
cles, with considerable accuracy. 

To enable SIRUS to remain both flexible and efficient for 
the ever increasing prediction requirements of the vari- 
ous business units within BAe, a suite of pre- and post- 
processing codes have been developed. With a view to 
performing true stealth design and assessment, SRC have 
recently developed the DEGRADE post-processing codes. 

DEGRADE allows for the SIRUS output images to be 
post-processed in such a way as to produce more realistic 
imagery. The SIRUS images are composed of a target 
embedded in a homogeneous background. DEGRADE 
can take this target image, and embed it into an alter- 
native background. This background can be measured or 
simulated, and DEGRADE can produce both these re- 
quirements, by conversion of measured data to a compat- 
ible format or by simulating backgrounds using Gaussian 
Markov statistics. Furthermore, DEGRADE can apply 
an MTF and noise, to simulate how the image would be 
seen as viewed through a sensor. Alternatively, the image 
can be transformed to a format compatible with more so- 
phisticated sensor modelling codes, such as the TACOM 
Thermal Image Model. 

This paper will describe how DEGRADE can be used to 
take simulated SIRUS images and create more realistic 
images, that can be used for better stealth design and 
assessment. 

1.    INTRODUCTION 

Low-observable vehicle design is a key factor in retaining 
the element of surprise during conflict and for improv- 
ing mission survivability. These considerations are not 
limited to the radio-frequency, which traditionally is per- 
ceived to be the main stealth consideration. Increasingly, 

the total signature from all frequencies across the electro- 
magnetic spectrum must be considered in the overall de- 
sign of a low-observable vehicle. Predicting Infra-red (IR) 
signatures has therefore become an important design fea- 
ture, and over the last decade BAe has developed the 
SIRUS code to achieve this. 

SIR US is capable of providing IR signature predictions 
on air-breathing and rocket propelled vehicles with con- 
siderable accuracy. The properties that are modelled by 
SIR US include: 

• Surface temperature 

• Surface reflectance (parameterised Bidirectional Re- 
flectance Distribution Function) 

• Cavity physics 

• Plume gas radiative transfer (including particulate 
scattering) 

• Atmospheric effects (including solar contributions) 

• Backgrounds 

• Sensor effects (imaging and threshold detection) 

A key element in the design process however, is not nec- 
essarily the IR signature itself, but the contrast with its 
environment. It is quite feasible that the IR signature 
of a vehicle may have components that are in positive 
contrast to a particular background, and others that are 
in negative contrast. This could render the IR signa- 
ture contrast-neutral when unresolved in the imager (sub- 
pixel). Whereas, when the aircraft is closer, thereby im- 
aged by multi-pixels, the IR signature structure is resolv- 
able and the neutral contrast seen at sub-pixel resolution 
is lost. Furthermore, the structure of the IR signature, 
in some circumstances may improve the low-observability 
at resolved distances, as the structure may act as a cam- 
ouflage against a cluttered background. 

To enable SIRUS to remain both flexible and efficient, 
a suite of pre- and post-processing codes have been de- 
veloped alongside.    One such code, DEGRADE allows 
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predicted signatures to be embedded into a variety of al- 
ternative backgrounds, against which their observability 
can be assessed. The DEGRADE suite of code can also 
create and/or convert these backgrounds, and transform 
the images to simulate how the image would be seen as 
viewed through an IR sensor. These applications add re- 
alism to the signature predications provided by SIRUS, 
and this paper describes how DEGRADE can be used 
to enhance low-observable design and counter-stealth as- 
sessment. 

2. BACKGROUNDS 

There is a necessity within the Aerospace industry to cre- 
ate representative models of backgrounds for use with 
our SIRUS target IR prediction capabilities. There are 
software packages available to generate synthetic back- 
grounds, however, these tend to rely intensively on skilled 
users. Furthermore, it is not possible to generate nor 
measure every conceivable background scenario required. 
Instead, BAe have adopted the approach of generating 
most of the backgrounds required using Gaussian Markov 
statistics. The DEGRADE suite of codes has the capabil- 
ity of generating such backgrounds, as well as converting 
measured imagery to a format compatible to be used with 
the SIR US target images. 

The degree of complexity used in generating backgrounds 
is, to a certain degree, a matter of user choice. The sim- 
plest method is to use a homogeneous background, where 
a constant value (e.g., radiant intensity, /[WSr-1]) is 
used for every pixel in an image designated non-target. 
The next level of complexity would be to allow a sta- 
tistical variance of the mean value, so that the radiant 
intensities of the background pixels vary across the im- 
age, e.g., I ± cr[WSr-1]. The method employed here is 
one level of complexity greater, whereby the background 
pixel values are generated using a statistical variance of 
the mean plus a correlation length. To do this, Gaussian 
Markov statistics have been employed, and forms part 
of the DEGRADE suite of SIR US post-processing codes. 
A variety of statistical parameters across an image may 
also be generated by manually combining separately gen- 
erated files. 

In this way, it is possible to use DEGRADE to gen- 
erate a wide range of statistically representative back- 
grounds for use with SIRUS target images. It then be- 
comes very simple to generate multiple background im- 
ages that, can be used with the SIRUS images, to en- 
able the low-observability to be assessed for varying en- 
vironments. Deciding on which statistical parameters to 
use to generate these backgrounds is more difficult.   A 

good starting place is often to statistically assess a suit- 
able measured background. Given a file containing pixels 
of measured apparent temperature (as for AGEMA 900 
measurement files) the mean (T) and variance (<r2) can 
easily be determined by: 

1    N 

n = l 

]7Ti£(T(n)-:f)J 

(1) 

(2) 
n = l 

where, T(n) are the apparent temperature values of the 
pixels and N is the total number of pixels. The calcu- 
lation of the variance, a2, sometimes uses l/AT rather 
than 1/(N — 1). The small sample approximation using 
1/(N - 1) is used in DEGRADE. 

To obtain a representative correlation length, the image 
is assessed by passing a linear mask over the pixels, in 
order to calculate the mean auto-covariance function: 

        1    N 
c® = iv E(r(n) - T)x (?>+o - T) (3) 

where, I is the separation distance between pixels (see 
figure 1, hence, for a horizontal mask of 2 pixels I = lx 
pixel width, and a vertical mask of 3 pixels / = 2x pixel 
heights). 

2 pixel 
horizontal 
mask 

3 pixel 
vertical 
mask 

pixels 

4 pixel 
horizontal 
mask 

Figure 1: Examples of the horizontal (x-) and vertical (y- 
) masks used to assess the statistics of a pixelated image. 
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The correlation length, a  l[m] can then be calculated 
from: 

C(l) = a2e'aI - a~l = 
-I 

ln{C(l)/a2) 
(4) 

An example of an image measured by an AGEMA 900 is 
given in figure 2. 

Figure 2:  Measured scene using an AGEMA 900. 
1.293-2.579 W/Sr. 

Scale 

The image is a sky scene showing some cloud structure. 
The statistics of this image were assessed, as described 
above. These values were then used to generate an image 
using the Gaussian Markov statistical method, and the 
resulting image similarly assessed. Table 1 gives the re- 
sults of these statistical analyses, and figure 3 illustrates 
the resulting statistically generated image. 

Figures 4 and 5 indicate the distribution of temperatures 
and auto-covariance functions for the measured and gen- 
erated images, respectively. These figures, together with 
the results shown in Table 1, indicate that the images 
compare very well. Furthermore, the images themselves 
(figures 2 and  3) show distinct similarities. 

Figure 3:   Simulated image using the statistical assess- 
ment of the measured image. Scale 1.293-2.579 W/Sr. 

radiant intensity from apparent temperature is achieved 
by Planck function interpolation. However, this assumes 
that the simulation range between sensor and target is 
constant for all pixels. If this is not the case, then errors 
will result. A pixel range map would allow this poten- 
tial problem to be avoided, and this is planned in future 
developments of DEGRADE. 

3.    EMBEDDING A TARGET 

One of the main tasks of DEGRADE is to take a SIRUS 
image file, extract the target from the homogeneous back- 
ground and embed the target into an alternative back- 
ground. It is assumed that the SIRUS target will be a 
high resolution image with the background at a lower 
resolution. The embedding process is achieved by area- 
weighting the radiant intensity values of the target and 
background pixels, thereby creating a new image. The 
area-weighting of the radiant intensities is achieved thus: 

{Ah-Ay)        A? 
Ires — h -. 1" U —T- 

Ab At 

TABLE 1: Statistical assessment results of the 
measured and simulated images. 

Measured image Simulated image 
T[K] 
**[K) 
a-l[m] 

264.52 
41.53 
52.16 ±8.60 

264.52 
41.06 
46.86 ± 7.68 

where, h is the radiant intensity, and Aj is the area (cm2) 
of the background (this is equivalent to the projected 
pixel area); Af< is the target area component residing 
within the background; and It is the radiant intensity, 
and At is the area of the target pixels. This calculation 
is performed for each target and background pixel, hence 
calculating a resulting radiant intensity, Irts. 

The statistical assessments and image simulation are 
achieved using apparent temperature values [K], Radi- 
ant intensities [H^5r_1] are more appropriate values to 
use, as they are independent of pixel area. Calculation of 
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Figure 4: Temperature distribution of the measured and simulated images. 
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Figure 5: x- and y- auto covariance functions of the measured and simulated images. 
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The image in figure 6 indicates the resulting image of 
a target embedded into the DEGRADE simulated back- 
ground, shown in figure 3. The image in figure 7 shows 
the same target, in the same position embedded in a ho- 
mogeneous background. 

Figure 6: Target image embedded into a cluttered back- 
ground. 

Figure 7:   Target image embedded into a homogeneous 
background. 

Figure 8: Target image embedded into a cluttered back- 
ground, with sensor effects (line spread function and 
white noise) added. 

The radiant intensity of the homogeneous background 
was taken as the mean radiant intensity of the target, 
so that the image would be contrast neutral if unresolved 
(sub-pixel). The target is clearly resolvable, spread across 
multiple pixels (37 target pixels in a total of 36450). 
From figure 6 it can be seen that the target in the clut- 
tered background is well camouflaged by its surround- 
ings. Whereas, the target embedded into a homogeneous 
background (figure 6) is clearly distinguishable from its 
surroundings. 

4.    ADDING SENSOR EFFECTS 

The images shown in figures 6 and 7 are indicative of the 
effect of clutter on the ability to distinguish a target from 
background. However, these images are idealised cases, 
as no account of the sensor response has been included. 
DEGRADE can take these images and apply simple sen- 
sor effects, in terms of a line spread function and white 
noise. Figure 8 shows the image given in figure 6, with 
these simple sensor effects included. 

By adding a line spread function and adding some white 
noise, the target in the cluttered background becomes 
even more difficult to distinguish from its surroundings. 

To enable the full extent of the sensor effects to be simu- 
lated, the SIRUS output can be integrated with other 
codes, such as the commercially available code TTIM 
(OptiMetrics, Inc., 3115 Professional Drive, Ann Arbor, 
Michigan, USA). Figure 9 illustrates the capabilities of 
the DEGRADE suite and its potential integration with 
other codes and facilities. 

Image files (from, e.g., SIRUS; AGEMA measurements; 
Statistically generated backgrounds; ACSII data) can be 
converted into alternative formats for assessment. The 
IMAGE sub-program of DEGRADE allows these image 
files to be converted to a variety of output formats, as 
shown in figure 9. VIZ is a visualisation code, developed 
by BAe, whereas TTIM is the TACOM Thermal Imager 
Model, used to evaluate sensor effects. The effects that 
can be modelled using TTIM are far more extensive than 
the DEGRADE sensor modelling sub-program (MTF), 
and include: 

• Atmospheric and battlefield effects 

• Detector responsivity 

• Atmospheric and optics MTFs 

• Optional spatial sampling 

• Detector noise 

• Post-detection MTFs 
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Figure 9: Flow chart illustrating the processing capabilities of DEGRADE. 
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5.    CONCLUSIONS 

The British Aerospace code, SIRUS in conjunction with 
its post-processing suite of codes, DEGRADE can be used 
as powerful tools in the design of low-observables. A 
wide variety of problems can be addressed, ranging from 
simple point signature assessments through to contrast 
analyses and probabilities of detection. This end-to-end 
capability is of use to both the low-observable and the 
counter stealth designers. SIRUS is capable of provid- 
ing high resolution Infra-red predictions on air-breathing 
and rocket motor propelled vehicles, with considerable 
accuracy. DEGRADE on the other hand, can take these 
SIR US images and create realistic scenarios. This is done 
by generating suitable cluttered backgrounds, embedding 
the target images into them, and applying sensor effects 
to simulate how the images would be seen as viewed 
through a sensor. This then allows for the detectabil- 
ity/effective camouflage of a vehicle to be assessed in a 
variety of environments. 

These capabilities, and the continued development of 
both SIRUS and DEGRADE, create a suite of powerful 
codes that can fully address the requirements of stealth 
and counter-stealth design. 
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Exact calculation of reflected earth/sky radiance from a plate 
with specified BDRF, and with arbitrary orientations 

of plate and detector 

M. J. Caola & N. C. Roberts, British Aerospace Sowerby Research Centre, 
Filton, Bristol BS34 7QW, U.K. 

Abstract The accurate calculation of the I.R. signature of a multi- 
facet/plate model of a real vehicle in a real environment must include the 
the correct physical modelling of accurate BDRF reflectance and atmospheric 
radiance. The measured BDRF of a plate is fitted to the OPTASM model 
with cubic-spline interpolation, for use in the 2-D integral of the radiance 
reflected from the plate. The earth/skyshine on the plate is similarly inter- 
polated from MODTRAN at given height and atmosphere. The radiance 
reflected from the arbitrarily orientated plate to an arbitrary detector di- 
rection is calculated numerically using the basic radiance integral with the 
(now) continuous BDRF and MODTRAN functions. We give numerical ex- 
amples of this detector radiance in various BDRF-MODTRAN-orientation 
scenarios. The reflectance is calculated directly in spherical-polar plate co- 
ordinates, but the results are expressed in the earth co-ordinates of plate and 
detector . 

Analysis 
Recent requirements and advances in I.R. stealth technology necessitate ac- 
curate calculation of the atmospheric radiance reflected from an vehicle sur- 
face. The surface is usually modelled as a connection of flat facet/plates, 
so this calculation is the sum of radiances reflected from single plates: each 
has different area Am, orientation and surface reflectance chararcteristics. 
This reflectance is completely described by the surface BDRF (bi-directional 
reflectance function) p'', which experimentally is the fraction of radiance re- 
flected into an arbitrary direction from a (different) arbitrary incident di- 
rection. The earth's atmospheric radiance is accurately modelled by a code 
such as MODTRAN, and depends only on the elevation angle 6 to the earth 
surface normal z direction. 

The plate m is orientated at elevation 8m and azimuth <f>m to the natu- 
ral earth axes xyz, and at height h above the earth (we envisage radiance 
summation over plates m = 1,2, ...M comprising the model). The plate axes 
XYZ are fixed on the plate, with Z as the plate normal. Starting with co- 
incident earth- and plate-axes, the latter are rotated by <f>m about z followed 
by 8m about Y', which specifies the XYZ axes (see fig.l). 

The radiance reflected to an arbitrarily orientated detector is the sum 
over the 2n sr above the plate surface of the product of atmospheric radiance 
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with BDRF. This calculation can be done in earth xyz or plate XYZ, but 
must of course be expressed in 'real-world' earth co-ordinates. 

We present here the calculation in plate XYZ, then referred back to earth 
xyz. We have also done the same completely in earth xyz: exact agreement 
between the two, involving cases with Helmholtz reciprocity, leads us to 
believe that both analytical methods are correct. 

(Notation: we use upper-case Roman and Greek symbols for plate vari- 
ables, and lower case for earth variables. Thus 
plate: radiance 7,7', polar 0,$,©',$', direction £2(0,$) 
earth: radiance z, i' , polar 8, </>, 8\ <t>'   , direction u>(6, <f>), plate 8m, <t>m 

Here / is an incident and g' is a reflected variable.) 
The plate-system radiance reflected to a detector in spherical-polar direc- 

tion (0', $') is [1] 

J'(0', *', 6m, <f>m) = fj d$ fj2 de 7(0, $y (0, *, 0', *') cos(0) sin(0) 

(1) 
The BRDF p' is the fraction of incident radiance 7(0,$) reflected in 

detector direction (0',$'), and is physically modelled by the OPTASM ex- 
pression [2] 

oue $ ©' &) = —^         (2) M"   '   }   B(Q) +1 - npk(Qpk,M.fn©',*')        [ ' 
where fipfc.fi' is the dot-product of the two unit-vector directions, i.e. the 
cosine of the angle between them, and Qpk are the OPTASM-fitted peak 
direction(s). We consider only an 'isotropic1 non-figured plate surface here, 
so 

p' = p\Q,&,*-*') (3) 

and 
$Pfc = $ - 7T- (4) 

We also note that (Helmholtz) reciprocity ('reversibility of light') means 

p,(0,*,e',$,) = p'(0'^,,0^) (5) 

Our final reflected-radiance 2-D integral is, referred back to earth detector 

i'(0',6m,<p'-<pm) = 

I2" d<S> /^ dP> 7(0,$)cos(0)sin(0)A(0)  
Jo Jo        "B(0) + l-cos(0pi(0)cos(0') + sin(0pfc(0)sin(0')cos($-$') 

(6) 
To practically calculate this integral we need 7, 0', $' expressed in earth co- 
ordinates: 

l(0,$) = i(0) 0 = 0(0,$,0m) 
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*' = *'(0m,*m,M') (7) 

These expressions and the integral are calculated using Mathcad intrin- 
sic functions. Firstly, instrinsic genfit was used for the best Levenberg- 
Marquardt fit of OPTASM {A, B, Qpeak} for each of the discrete in-line 
BDRF data at incident 0,nc = 0,10, 20..85°. Secondly, intrinsic cubic-spline 
cspline and interpolation interp were used to create continuous OPTASM 
{A(G),B(e),6peak(6)} and continuous MODTRAN i(6) from the above 
discrete ones. Finally, the continuous {*, A, B, Qpeak} and expressions (7) 
were used in Mathcad (6). 

The detector also receives self-emitted radiance from the plate 

I'self(Q'^') = B(X,Tm)[l-p(Q',^)} (8) 

where B is the Planck function at wavelength A and plate temperature Tm, 
and HDR 

P(&, *') = r/a <& r d$P'(e, $, G', n (9) 
Jo Jo 

which integral is calculated in Mathcad as above. 

Results are shown for a BDRF having no sensible specular component, which 
was thus fitted with a single OPTASM term, as in (2). (A good fit to semi- 
specular BDRF was also obtained with a two-term model.) We append 
Figs.2-10 of MODTRAN radiance i(6), a sample BDRF fit, and detector 
radiance i'(0', 6m,0) as a function of detector elevation angle 9' for plate el- 
evations 6m = 0,30, 60..180°. We believe that these i'(9') are exact reflected 
radiance under the specified conditions. They generally peak markedly at 
0'max and 0'min, due to the rapid increase of both p' towards grazing incidence 
and of skyshine i(6) above 6 ~ 90°. However, the more fundamental reflected 
power w' at the detector 

w' = i' cos &Au}deiAm (10) 

shows less variation. 
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BRDF Modeling for Physically Accurate Image Rendering 

John W. Hilgers, William R. Reynolds, Randall J. Houle 
Signature Research, Inc. 

James Jafolla 
Surface Optics Corporation 

ABSTRACT 

The bidirectional reflectance distribution function (BRDF) 
[1] describes the directional reflective properties of a 
surface. It is therefore a function of four angles, the azimuth 
and zenith angles for both the incident and reflected 
directions. If the reflectance is anisotropic, a function of the 
azimuth angle, then approximately 109 floating point values 
are required to specify the BRDF for one degree angular 
increments. In addition, if the surface has even moderately 
specular facets the BRDF will have lobes of large 
magnitude but small angular subtense. This makes 
utilization of the BRDF difficult from a practical standpoint. 

A method for solving these problems was based on 
determining each lobe's location and angular subtense as a 
function of the incident direction angles. The lobe's shape 
was determined by computing its second moments and 
equating these to the corresponding moments of a Gaussian 
distribution function. Thus for each lobe six variables, the 
lobe's centroid, height and the three coefficients in the 
exponent of the Gaussian, were tabulated as functions of the 
incident direction. These functions were then modeled by 
bilinear interpolation. While straightforward conceptually, 
obtaining this database for highly structured surfaces proved 
a challenge. 

Once the BRDF model is available it is applied to the 
problem of rendering physically accurate images. A unique 
hybrid rendering approach is described and demonstrated 
using anisotropic BRDFs. In summary the approach uses a 
measured background and employs first the radiosity 
method and then standard ray tracing to make extremely 
detailed renderings. 

INTRODUCTION 

The objective of the present study is to synthesize a 
calibrated spectral rendering of targets from the UV through 
the LWIR (8-12 microns) bands. Furthermore, arbitrary, 
realistic backgrounds are to be incorporated by projecting 
the imagery onto a hemisphere surrounding the scene. 

This approach requires the rapid computation of many 
BRDF values, which can only be achieved by initially 
modeling     these     potentially     pathological     functions 

accurately. The BRDF is obtained by experimental 
measurement, which results in an exceedingly large 
database, or, alternatively, the execution of a simulator like 
MicroOpt. It is assumed the BRDF is anisotropic and will 
eventually include polarization effects. The unique and 
innovative features of this approach include: 

• the rendering of both diffuse and specular surfaces 
from a spatially differentiated background. 

• The  utilization  of both radiosity  and  raytrace 
approaches to exploit the advantages of each. 

• The    insertion   of   the   target   into    measured 
backgrounds and the addition of sensor effects. 

FITTING THE BRDF 

Due to the exceedingly pathological behavior exhibited by 
typical BRDF's, standard methodologies for the modeling 
and approximation of functions were impractical and 
alternate strategies were needed. Standard approaches [2] 
include interpolation, fitting a linear model or fitting a 
nonlinear model to the data. The first two methods usually 
involve the solution of a linear system; the third a Powell or 
Levenburg-Marquardt method for rrunimizing over model 
parameters. While such methods are very effective in single 
instances, applying them when thousands of incident 
directions must be evaluated is impractical. To circumvent 
these difficulties a method which obviates the need for 
optimization by computing approximations in the "forward 
direction" was applied. The method of choice was to fit a 
Gaussian distribution to the BRDF by equating moments. 

Many different models were tested including wavelets, 
spherical harmonics, B-splines, Cauchy distributions, the 
OPTASM [4,5] model and the Gaussian distribution. Only 
the latter had finite second moments computable in closed 
form. By the Gaussian distribution is meant the function, 

(1) - pJ-ax:-2bxy-cy:) p = Re 

where x=Qr- $    and y=<f>r-  </>  •   Equation (1) has six 

parameters. R gives the height of the lobe, the ordered pair 

(6  >^  ) gives the lobe's position, and the triple (a,b,c) 

gives the lobe's orientation. 
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(2) 

The zeroeth and second moments for (1) are: 

to =\\e(-^-2bx^)dxdy=7t/D, 

Mn =\\x2^-2bx^>dxdrK/2DS 

Myy =\\y2e(-ax:-2bxy-cy:)dxdy = mi/2D3 

Mxy =\\xye(-ax2-2bxy-cy:)dxdy = -}ib/2D3 

where in (2) D = Sac-b2 . It 
which yields, 

is easy to invert (2) 

(3) 

and        c = PoMxx /D< 

where this time in (3) D = 2(ryxxMyy - MxyVxy ) 

The procedure for the six parameters now is: 

(4) 
• Determine a reasonable sample frequency based on 

lobe behavior. 
• At each sample point find and delimit all lobes. 
• Then numerically perform the integrals in (2) on 

the lobe data. 
• Then use (3) to establish parameters a, b and c. 
• Let R in (1) be the lobe maximum. 

• Let ( Q  ,<f> ) be the lobe centroid computed from 

the first moments or, alternatively, it could be the 

(Or'fir) w^ere the '0De maximum occurred. 
• All six parameters are tabulated for each lobe. 
• For  given  incident  direction,  interpolate  these 

tables to approximate the six parameters. 
• These parameters with the reflected angles allow 

the BRDF computation via (1). 
• This must be done for each lobe, and a diffuse 

component added to fill in between lobes. 

LOCATING AND DELIMITING LOBES 

There are two general approaches for finding lobes at the 
sample points. Each has its advantages and disadvantages 
and each method is partially dependent on the other. 
Method 1 is the "tracking" program which, once a lobe is 
acquired, tracks it to the next sample point by gradually 
varying the incident direction. Method 2 is the "scanning" 
program which simply advances to the next sample point 
and searches for all lobes by computing on a very fine 
(usually angle increments of one or two degrees) 
reflection grid. Method 2 has the advantage of being 
automatic, albeit very time consuming.    However, lobe 

identification at adjacent sample points still requires a 
rudimentary tracking program. Only by following the lobe 
can the user be sure which lobes at adjacent sample points 
are, in fact, the same lobe. 

Method 1 is much less automatic since the tracking 
programs run the risk of losing the lobe for reasons cited 
below. The user may be required to run several different 
programs to reacquire the lobe, or, if the lobe has vanished, 
to determine if the lobe reappears. The tracking programs 
require a scan of at least one sample point to initially detect 
all lobes. 

Some reasons why this part of the entire process is the most 
difficult and time consuming are: 

• lobes vanish and reappear. 
• Lobes coalesce and bifurcate. 
• The hull enclosing the lobe may enclose multiple 

lobes. 
• A tracking program slips off one lobe and onto 

another. 
• Lobes can include the zenith which complicates 

anaylsis. 
• Winding numbers values may disagree implying 

discontinuities. 

These and other problems make post-processing of the lobe 
parameter databases, especially those for lobe height, R, and 
lobe position, essential. 

SEPARATING DIFFUSE AND SPECULAR 
COMPONENTS 

If the BRDF is computed by using equation (1) for the lobes 
exclusively, it will be orders of magnitude too small over 
regions far from any lobe. In the rendering process this can 
be disastrous since even small BRDF values can 
significantly impact pixel intensity in combination with 
strong sources. 

This problem can be solved several different ways 
depending on the nature of the diffuse component of the 
BRDF. 

The simplest fix consists in just adding a constant to the 
value obtained from the lobes using (1). This constant can 
be taken as the average of the diffuse component obtained 
by integrating over all four angles. Or the integration can be 
over the R-angles and the average value made a function of 
the I-angles. 
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The most accurate approach involves sampling the diffuse 
component coarsely and interpolating to get a value at each 
setting of all four angles. 

If the more sophisticated methods are to be used it is 
necessary to separate the lobes from the diffuse substrate. 
This is most easily done by a filtering procedure. For 
example, if a tabulated or simulated BRDF value exceeds a 
tolerance, replace it with the average of its nearest 
neighbors. If necessary this process can be repeated until 
the lobes are sufficiently suppressed. 

An alternate strategy for dealing with the diffuse component 
is to determine radiation exchange factors and compute the 
radiosity solution prior to executing the raytrace in the 
rendering code. This is discussed below. 

Figures 1 and 3 show BRDF lobes for the Sanford- 
Robertson and Specular settings, respectively, in MicroOpt 
for two incident directions. Figures 2 and 4 show 
the reconstructions obtained by the method just described. 

pbit. dtg 

Figure 3: BRDF Specular option, I-dir = (30,0) 

Figure 1: BRDFSanford-Robertson option, I-dir = (40,0) 

Figure 4: Gaussian Reconstruction for (30,0) 

RENDERING APPROACH 

Figure 1 schematically depicts the inputs and dependencies 
for the rendering process. BRDFs are modeled as described 
above and input to the Tenderer. FRED geometry models, 
RAD-X, which provides the radiation exchange factors for 
the radiosity solution, and PRISM are input in support of the 
rendering code. Currently these utilities remain "stand- 
alone", but eventually all components will be integrated into 
a single Visual C++ application. 

Figure 2: Gaussion Reconstruction for (40,0) 
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The measured RGB background, as shown in figure 2, is 
projected onto a hemisphere surrounding the vehicle as 
shown in figure 3. Thus step 1, establishing the target 
radiation environment, is complete. Step2 is to obtain the 
radiosity solution. Figure 4 shows the radiosity solution for 
a hemispherical target with a single source. 

Figure 6: Image of Calibrated Background. 

Figure 7:   Projection of Background on Hemisphere. 

Figure 8:   Radiosity Solution with Single Source. 

Step 3 is to raytrace [3] along specular lobes and to defined 
sources as well as sufficiently strong intensities that result 
from the radiosity solution. Multiple specular reflections 
can also be implemented. Step4 is to create the rendered 
image by adding sensor effects. Figure 5 shows three panels 

of varying specularity inside the hemisphere with the 
projected, measured background. The reflected tree line is 
clearly visible on the specular panel. 

Figure 9: Three panels 

SUMMARY 

It has been shown that BRDF databases, whether measured 
or simulated, can be effectively modeled, even in extremely 
pathological instances that arise from highly specular 
coatings. The integration of the accurately modeled BRDF 
with ray tracing techniques has been shown to produce 
intuitively appealing rendered images, and initial validation 
runs confirm that this imagery is indeed physically accurate. 

The continuing effort will be directed at making 
the BRDF modeling stage faster and more automatic. Better 
methods for dealing with inherent problems, like the 
behavior of the azimuth angle near the zenith, will be 
incorporated in the software. 

In the rendering phase parameters that affect the 
acuity of the final image will be fine tuned. Greater 
accuracy will be sought by including multiple specular 
bounces. And eventually polarization effects can be 
included since the independent elements of the Meuller 
matrices can be modeled just as the BRDF can. 

Finally the entire component package displayed in 
figure 5 is to be integrated into a coherent Visual C++ 
application. 
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ABSTRACT 

Developing valid target and terrain modeling to use in 
night vision and infrared simulations is based on the 
liberal use of measured data from reliable sources. This 
data requirement remains the same, whether you model 
tactical scenes using high-resolution photographs, or 
larger areas from lower resolution satellite imagery. 
Industry partners Surface Optics Corp and Surface Data 
Company developed a system to produce quality spectral 
reflectance and thermal emissivity data. It covers the full 
gambit of field collection, laboratory measurement, and 
database production. The end result is a growing library 
of geospecific and geotypical data from .3-25um, that 
makes results more believable and the output scenes much 
more realistic. 

This paper describes the general approach taken to collect 
cultural and natural materials, measure their reflectance 
characteristics, and produce validated data for use in 
computer modeling and simulation. Maps, satellite 
imagery, aerial photographs, ground photographs, and 
geological literature are all used to decide what are 
candidate locations for collected materials for 
measurement and inclusion. A team is then sent to that 
area, if possible, to collect samples and document all 
activities. Samples are brought back to the lab for 
preparation and measurement. The data produced is then 
put into a general ASCII format, for easy extraction into 
any modeling system. This white paper shows sample 
grayscale images "before" and "after"- first with data 
from outside sources, then after applying data generated 
from our approach. A much higher level of structure is 
apparent. 

INTRODUCTION 

Using validated data is a two part process. Part one 
presents a description of the optical property data library 
produced by Surface Data Company (SDC) using Surface 
Optics Corporation (SOC) manufactured instruments and 
technicians. This library contains a continuously 
expanding set of surface materials and, for each, a data 
listing of its spectral reflectance from 0.3 to 25.0 um (the 
actual data listings are given separately from this 
document). 

Part two explains how applying this data supplies core 
validity to spectral modeling. This is shown through 
examining use of the optical data in a specific application. 

Our approach uses "geospecific" data whenever possible. 
Information on geospecific samples are well documented 
and from identifiable locations. Samples that are of a 
more common nature, such as brick, yellow road stripe, 
and off-white exterior paint are considered "geotypical". 
Therefore, modeling the Yuma Army Proving Grounds, 
for instance, would have a much greater level of 
acceptance if it included optical properties of local "desert 
varnished rock", "Algodones Dunes sand", and "Arizona 
creosote bush" as opposed to generic granite, desert sand, 
and scrub brush. 

The process for converting the rough samples into usable 
data follows an easy to duplicate process. This assumes 
that the data format is determined, based on the 
simulation in use. Under this system, data is reduced into 
seven major categories. However, the end user's 
application ultimately defines the layout of the data 
format. 
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THE OPTICAL PROPERTIES LIBRARY 

The materials included in the SDC library are separated 
into seven categories. These are Soil, Rock, Vegetation, 
Hydrology, Construction, Fabrics, and Paints. We 
distinguish this material reflectance library from others 
available in that several types of reflectance data are 
provided, including reflectance as a function of the angles 
of incidence and reflection, and the diffuse and specular 
components of the total hemispherical reflectance. 
Libraries from other agencies typically provide only total 
hemispherical reflectance. 

We've also added photographs with this library set to 
provide users an ability to visualize the characteristics of 
the samples and understand the environment from which 
they were extracted. The photos are scanned from 
photographs or digitally acquired. 

The actual samples are compared to the video display on 
the computer monitor to adjust the color and tint to match 
the digital rendering as closely as possible. This is very 
important because the majority of visual imagery is not 
consistent with reality. This is especially true of false- 
colored "RGB" satellite imagery. The physical 
comparison immediately corrects this discrepancy. 

Photographs are Included 

Typically, three photos are included per sample (see 
Figure 1): 

1. A general area shot provides a view of the local 
environment. 

2. A site photo shows the immediate location from 
which the sample was obtained.  Every effort was 

3. A scanned image of the actual measured sample 
allows you to view the texture up close. 

Naming Convention 

The reflectance data files for each material are sorted by 
data type, with each file named using the following 
naming convention: 

"Category_material name_data type_ID number" 

For example: 

"S_Sandstone_HDR20_AK0056" is the name for 
sandstone soil, hemispherical directional reflectance 
at 20 degrees incidence angle with ED number 
AK0056. 

Geospecific Materials 

Each naturally occurring earth surface material in the 
library (which includes soils, rocks, and vegetation) is 
specific to a selected geographical location. For these, 
photographs and their descriptions are given for the 
general area from which the sample was selected, the 
specific in-situ location of the sample, and the actual 
sample that was measured. 

Also included are the actual latitude and longitude 
coordinates (WGS-82). In those instances where the 
same apparent material is included in the library, such as 
that of a dry lakebed or a dry silt-clay-sand from a desert 
wash, its specific location is the only information that can 
be used to explain differences in the reflectance of the two 
materials. This is most important for soils, and rocks 
whose mineral composition is difficult to determine, and 

Figure 1, Sample photos included in library. 

made to contain the field of view to 1-2 square 
meters. 

least important for vegetation (for example, Honey 
Mesquite from Arizona has essentially the same 
reflectance as that from California). 
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The manufactured samples, in categories Construction, 
Fabrics, and Paints, are not specific to a location. For 
these, only a photograph of the measured sample and its 
description are given. 

The Specific "Data Types" 

Total Hemispherical Reflectance (THR) - Total 
reflectance for a near-normal angle of incidence (7 
degrees) of illuminating source. 

Hemispherical Directional Reflectance (HDR) - 
Hemispherical reflectance for specific angles of incidence 
of the illuminating source. The presently included angles 
are 10, 20, 40, and 60 degrees (these are denoted by 
HDR10, HDR20, HDR40, and HDR60, respectively). 

Diffuse Directional Reflectance (DDR) - Hemispherical 
reflectance for specific angles of incidence of the 
illuminating source with the specular component blocked 
(±Vi degree from the specular angle). The presently 
included angles are 20, 40, and 60 degrees (these are 
denoted by DDR20, DDR40, and DDR60, respectively). 

Specular Directional Reflectance (SDR) - Specular 
reflectance component for specific angles of incidence of 
the illuminating source, computed by subtracting HDR 
and DDR. The presently included angles are 20, 40, and 
60 degrees (these are denoted by SDR20, SDR40, and 
SDR60, respectively). 

Bi-directional Directional Reflectance (BDR) - 
Reflectance as a function of reflectance angle in the plane 
of illuminating source for each incidence angle for which 
SDR data are measured. These data are provided in three 
spectral bands (visible, 3-5um, and 8-12um) from which 
the lobe width of the specular lobe can be determined. 

FIELD WORK 

Generating measured datasets starts with proper planning. 
First, the area of interest and targets for modeling are 
defined, based on an operational scenario or testing 
requirements. This drives the level of detail required and 
how many materials need to be represented at a given 
resolution. Both natural and cultural objects are 
considered. Sometimes data may already be available 
through our in-house library. Maps, satellite imagery, 
aerial photographs, ground photographs, and geological 
literature are all used to determine candidate collection 
locations. 

Then, a team is sent to that area, to collect samples and 
document all activities.  (Note: Sometimes an area is not 

accessible, so a neighboring location with similar geology 
and vegetation is used) Every effort is taken to comply 
with local and federal environmental restrictions and 
historical preservation policies. Samples and the general 
area are photographed, GPS coordinates obtained, 
prevailing conditions recorded, and locations are marked 
on maps. 

In some cases, full diurnal thermal emissivity profiles of 
selected samples are captured on location. This is can be 
folded into the simulation, as required. 

LAB WORK 

Overview 

Samples are brought back to the lab for preparation and 
measurement. After being logged into the database, SOC 
technicians use several instruments including the SOC- 
100 (Figure 2), SOC-250, and a CARY for the .3-2.0um 
range.  All   instruments  are  run   against  a  "baseline 

Figure 2, SOC-100 Instrument with grass 
sample about to be measured 

standard" prior to the first sample measurement to ensure 
consistency. (Note: SOC uses "fused silica".) 
Experienced engineers and technicians scrutinize the 
results of measurements for data as part of the quality 
assurance process. 

The data produced is then put into a general ASCII 
tabular format, for easy extraction into any modeling 
system.    Figure 3 shows a plot of sample soil data 

IO.0 15.0 

Wovelenqin (microns) 

25.0 
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presented as reflectance, as a function of wavelength. 

The area of interest can now be satisfactorily modeled 
based on data representing materials actually present. 
Although simulation algorithms require their own 
evaluation as to simulation accuracy, the underlying data 
is considered reliable. Auditing of data generated at mis 
core level is easy, since all samples, except vegetation 
(new samples can be obtained based on GPS coordinates), 
are retained for re-measurement, upon request. 

Check List 

The following checklist is used in working with end users 
under validation and verification (V&V) program 
requirements. 

• Tasking formally defined, with designated area 
of interest to model 

o    Defined level of detail required and 
resolution needed 

o    Defined V&V level of effort 
o    Budget and schedule 
o    Intelligence resources are available 

• Candidate samples chosen from  SDC library 
versus unique sample requirements 

Q    Field measurements versus lab measurements 
o    Field     and     Lab    instruments     are 

identified, based type of samples listed 
o    Data recorded and documented 

• Data processed 
o    Reduced data to user defined format 
o    Packed for delivery 

• Texture Material Mapper• *' (TMM). This is a 
software tool mat allows a user to associate 
optical properties to "RGB" pixels in a texture 
image. 

• MOSART Atmospheric Tool• fMAT). This is a 
software tool that generates the underlying 
atmospheric and natural thermal data for sensor 
simulations. 

We started by importing a false color, LandSat RGB 
texture of Panamint Valley, CA2 into TMM and applied 
the optimal geotypical materials, which were originally 
delivered. Figure 4 shows this list 

rials: 

SOI.L.l imestone_rock 
SOIL.salt-silt  . 
SOIL.desert_sand 
SOIL.lake_sand 
SOIL.roadLgravel 
CONSTRUCTION.black_asphal t 
SOIL.varni shed_sandstone 
VEGETATION.dry_grass 
VEGETATION.pine-scrub 

- '-^y ^^SSSSSSSSSSSSSSSSSSSSSk 

Figure 4, TMM geotypical data used in 
this demonstration. 

Then, still using this tool, we generated a radiance texture 
using the parameters as shown in Figure 5. 

CASE STUDY 

Geospecific data generated from a field trip to the Death 
Valley area was used in the creation of radiance texture. 
This was done to compare these results with a previous 
rendering, using best available geotypical optical 
information. The end result was an impressive 
improvement in both the overall radiance information 
produced and in the structure of the infrared texture 
generated. 

Software Packages Used 

Two commercial off the shelf (COTS) modeling tools 
were used in this case study: 

1 TMM & MAT are property of MultiGen-Paradigm, Inc. 
2 Provided courtesy of Raytheon Systems, Inc. 
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Figure 5, Radiance texture settings. 

A radiance texture was created (Figure 6) having the 
following values: 

• Min radiance= 0.00031 w/cm2«sr 
• Max radiance= 0.00090 w/cm2«sr 

Next we repeated the process, using some of the 77 new 
SDC geospecific materials (See Figure 7).     The result 

Selected Materials: 

R.Breccia_THR_AK0035 
R,Do! e rite_TH R_A K00 3 0 
R.Cabbro_THR_AK0092 
R.Granite_THR_AK0070 
R.Lfmestone-Caliche_THR_ 
R.Limestone_THR_AK0060 
R.RockVarnish_THR_AK007 3 
S.SandDune_THR_AK0062 
S.SandDune_THR_AK0071 
V.BigSagebrush_THR_AK000 

Figure 7, New geospecific materials applied. 

from this application of data was: 

• Min radiance= 0.00029 w/cm2*sr 
• Max radiance= 0.00060 w/cm2«sr 

Here is the radiance texture produced (Figure 8). 

Figure   8,   New   geospecific   radiance 
texture. 

Comparing the Results 

Figure 6, Radiance Texture from geotypical 
data. 

A side-by-side comparison reveals obvious differences in 
detail and image radiance. Here are some of those 
differences: 
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• Radiance contrasts of the two images are very 
different, particularly in lower right quadrant 

• Pixel-to-pixel radiance differences are as great 
as 50%. 

• Geospecific maximum radiance is less by 33% 
and at different image location. 

SUMMARY 

Presenting results of modeling efforts to customers, or 
end-users, leaves a lasting impact on them. Incorporating 
verifiable, underlying data with a validated visualization 
system, promotes a high acceptance level. This type of 
data must be well documented. The validation process 
should then be quick and painless. 

However, if the simulation uses questionable data, even 
though the visualization system is validated, results will 
suffer greatly. Additionally, accuracy of any follow-on 
results presented will always be suspect. 

The following steps are required in geospecific modeling: 

1. Perform a good field survey. 
2. Use    geospecific    optical    properties    when 

appropriate. Make sure it is validated. 
3. Compare results with existing imagery, when 

possible. 
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ABSTRACT 

General Dynamics and Signature Research have been 
developing a signature based situation awareness model 
to generate a maximum survivability route plan for 
ground vehicles. The model, called the Signature 
Situational Awareness Aid, (SSAA) incorporates user 
input for definition of parameters such as weather, 
environment and operating conditions together with a 
stored database on vehicle systems, terrain maps, threat 
characteristics and threat location to calculate multi- 
spectral signatures, line of sight information and detection 
vulnerability. The output generated includes a situational 
map, vulnerability status and probability of detection in 
both static and dynamic modes. Plans are in progress to 
incorporate all output information into the generation of a 
route plan for the vehicle to follow to its objective which 
minimizes its probability of detection from known and 
postulated autonomous and crew served threat weapon 
systems. 

INTRODUCTION 

The Joint Chiefs of Staffs vision of future warfighting 
stresses the development and use of information 
superiority to achieve full spectrum operational 
dominance." A major factor in achieving and using this 
information superiority is obtaining a real time dynamic 
situational awareness capability to aid in decision making. 
As defined by the DoD, situational awareness is the 
"knowledge of one's location, the location of friendly and 
hostile forces, and external factors such as terrain and 
weather that may affect one's capability to perform a 
mission"2' The Signature Situational Awareness Aid 
being developed by General Dynamics and Signature 
Research addresses the information superiority objective 
for ground vehicles through a signature based model to 
generate a minimum detection vulnerability route plan 
using both dynamic sensor input and stored data. 
Feedback to a command and control grid is provided for 
continuous update of battlespace awareness, and a real 
time input of the tactical situation is sent to the precision 
force to present current information on friendly and 
enemy force location and tactics. 

Figure 1 illustrates the information flow using signature 
situational awareness as one facet of achieving full 
spectrum operational dominance. 

Full Spectrum 
Operational Dominance 

t 
Signature 
Situational 

- Awareness 
Aid 

Dominant 
Maneuver 

Ground 
Combat       4— 
Vehicles 

A T t 
Battlespace 
Awareness -• 

Precision 
Forces 

I i t 
Operational 
Effectiveness 

r 

Command and Control Grid 

Figure 1 Information Flow to Achieve 
Full Spectrum Operational Dominance 

Signature Situational Awareness Aid Methodology 

The SSAA was conceived as a way to enhance combat 
vehicle survivability by automating the input of multi- 
spectral signature data into a situational map to generate a 
maximum survivability route plan to the vehicle's 
objective. Figure 2 illustrates the overall methodology for 
the SSAA. In all cases, the input can be provided from 
stored data, a command center, or entered directly by a 
member of the vehicle's crew. Calculations are 
performed using software specific to SSAA, but which 
incorporates look up data as required. Output displays are 
provided to the vehicle crew to help in decision making, 
and information can also be sent to a command center to 
add to battlespace awareness as an aid in decision making 
and an update on the tactical situation. 
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Input Calculations Output Displays 

Weather Multi- 
Signature 

Situational 
Map 

Operating 
Conditions —\ Line-of- L-N Vulnerability 

—f Sight —i Status 
Environment 

Detection Probability 
Threats Vulnera- of Detection 
Friendlies bility 

Automated 
Route Plan 

Input 
Figure 2   SSAA Methodology 

The input to SSAA is a combination of sensor 
observations, data from the command grid, and crew 
observations. For example, weather data can be entered 
by the crew through observation. However, as the SSAA 
become more mature, it may become desirable to 
incorporate sensor data such as solar irradiance history to 
provide a more accurate self signature calculation, and 
relieve the crew from the burden of entering this data. 

In its current form, SSAA weather input is limited to 
relative humidity, cloud cover, rain rate, and visibility 
distance. The input can be entered from meteorological 
information at the beginning of a mission, and updated by 
the vehicle crew as conditions change. Figure 3 
illustrates the weather input selections as they appear on 
the SSAA screen. 

Background selections are made to describe the vehicle's 
immediate area. In the SSAA's current configuration, the 
background is divided into organic materials such as 
grass, weeds, shrubs, and trees, and inorganic materials 
such as sand and concrete. The vehicle crew can update 
the background data as the background varies during 
dynamic operation. Figure 4 illustrates the background 
screen input to SSES. 
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Figure 4     Background Parameters 

Both the friendly (blue) force and threat (red) force type 
and location are entered into the SSAA. Currently, the 
planned blue force input to SSAA is limited to the Ml 
tank, M2 DFV, M-l 13 APC, and HMMWV truck. Sensor 
characteristics of each vehicle are stored in the 
computer's database. The red force location and makeup 
is also entered into the SSAA, and displayed on the 
SSAA's screen. Stored data on each type of vehicle, both 
blue and red, is used to calculate the vehicle's 
capabilities. For example, the T-80's FLIR detection 
capabilities are available for determining blue force 
detection vulnerability. The force location and mix can 
be altered as information from external sources is 
received. Figure 5 illustrates a portion of the red force 
selection menu The stored data on each threat system 
includes the type and performance characteristics of the 
target detection equipment (FLIR, I2, etc.) that is normally 
mounted on that vehicle. This allows the calculation of 
the threat search and detection capabilities. 

' 

Figure 3 Weather Input Selection Figure 5 Red Force Selection Menu 
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As stated in the introduction, situational awareness for 
full spectrum operational dominance requires knowledge 
of the friendly force location. This is accomplished in the 
SSAA by accommodating the input of the type and 
location of all known friendly vehicles. Transmitted data 
from the central command and control grid allows the 
precise location of the vehicles to be displayed on the 
SSAA screen. Line of sight and detection probabilities 
for the friendlies are not included in further calculations, 
but identification of other blue vehicles provides the 
vehicle crew with updated battle-space awareness in their 
operational area. 

Vehicle Operating Conditions 

Current production U.S. combat vehicles are equipped 
with a digital electronic architecture that includes sensors, 
data busses, microprocessors and memory. This provides 
the opportunity for sensing, displaying and storing a time 
history of the vehicle operating conditions that contribute 
to the calculation of vehicle - background thermal, visual 
and radar signature contrast In addition to main engine 
operating data such as time spent at idle RPM versus 
higher RPM movement at speed, operation of auxiliary 
power generators, if incorporated on the vehicle, provide 
a time history which must be considered in accurate 
thermal signature calculations. 

Most vehicles are also equipped with on-board navigation 
systems that provide information on their current latitude, 
longitude, elevation, and hull heading direction. A turret 
position indicator also shows the turret/gun heading with 
respect to the hull. These systems are capable of 
providing the time history data necessary for 
determination of relative sun angles for various vehicle 
surfaces facing the threat and their exposure to solar load. 
These exposed vehicle surface data are also used in 
calculating the effective radar cross section and visual 
vehicle/background contrast due to radar and solar 
illumination of the various vehicle surfaces. In addition, 
the navigation and turret position indicator systems also 
provide information on which side of the vehicle is facing 
the threat and the direction of the gun relative to the 
threat. 

Calculations 

Once the input information on weather, environment, 
operating conditions and threat is entered, the SSAA 
calculations can be made to estimate the blue vehicle's 
current vulnerability to detection by various threats. 

At present, predicted detections by threat sensors in the IR 
and visible bands are incorporated in the SSAA. Future 
efforts will implement threat acquisition estimates in 

radar, MMW, and acoustic bands. For the RSTA and EO 
sensors presently implemented in the SSAA the path to 
obtaining a probability of detection, Pd, takes the in-band 
self signature, propagates it through the atmosphere at 
range and then uses characteristics of the threat sensor to 
compute a Pa. 

The signatures of blue target vehicle along with its 
surrounding background must be estimated prior to 
calculating the probability of detection by a threat sensor. 
In general, to estimate the threat Pd, requires knowledge 
of the threat sensor performance, range to the threat, 
atmospheric transmissivity, and the vehicle signature 
including aspect and background. Although having 
limitations, we have incorporated the ACQUIRE model 
formalism to generate the actual Pa estimates. In general, 
the ACQUIRE Model works well for resolved targets 
having moderate contrast in backgrounds with medium 
clutter levels. 

Line of Sight Determination 

Standard military topographic maps available on CD- 
ROM are utilized in the SSAA to determine line of sight 
(LOS) between the blue and red vehicles. SSAA 
elevation data was MIL-PRF-89020A standard Digital 
Terrain Elevation Data (DTED) Level 1 with three arc 
second accuracy. The 1:125000 scale SSAA topo map is 
generated from the DTED Level 1 data with elevation 
gradients of 20 meters. 

The LOS algorithm is based on the routine used on NIMA 
MUSW 2.1 software. In this algorithm, the depression 
angle between the observer and each point along the line 
to the target is computed. The angle is compared to the 
previous angles to determine if LOS is maintained. 

IR Signature Estimation 

The IR signature of the blue vehicle can be obtained by 
several different means including utilizing surface 
temperature sensors, look-back sensors, nearest neighbor 
sensors and thermal models. While the first three have 
definite advantages and could be implemented in the 
SSAA we have made the less intrusive choice of using the 
thermal model PRISM. 

PRISM is a proven high fidelity, first principles, IR 
signature model having a long developmental history and 
has been widely reported in the literature. In summary, a 
PRISM signature is computed using a coarse nodal 
description of the vehicle where a dynamic energy 
balance is computed for each node. From this energy 
balance a node temperature is computed. Given the 
surface optical properties of each node or facet the 
radiosity of each surface is computed. 
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PRISM is unique in that the internal thermal sources are 
developed from first principles. For example, the power 
required at the drive sprockets is the product of the speed 
and rolling resistance plus the power required to negotiate 
the terrain grade. Therefore, power developed at the drive 
shaft is a sum of the transmission and gearbox losses and 
the drive sprocket power. The amount of waste heat is 
derived from the sum of the thermal losses due to 
inefficiency of the engine and transmission. The waste 
heat leaves the system via the exhaust gases and the 
cooling system. Given mass flow rates of the exhaust 
gases and coolant air the temperature of these gases can 
be accurately estimated. Consequently, the temperatures 
of the exhaust stacks and exit grill can be computed. 

Some of the required inputs to PRISM are readily 
available. For example, vehicle latitude, longitude, 
elevation, speed and direction are available from on-board 
GPS via the vehicle vetronics bus. Asymmetrical solar 
heating of the vehicle is computed in PRISM from the 
heading information. At present the meteorological data 
as well as background characteristics are primarily 
obtained from user input over the diurnal cycle. If the 
SSAA is integrated into a future vehicle inexpensive on- 
board sensors could be used to provide higher fidelity 
data. Background information can also be derived from a 
high fidelity DTED database if available and 
subsequently can be supplemented by user input. 

Visible Signature Estimation 

We have implemented an empirical model of the 
luminance contrast of baseline military targets in back- 
country terrain that was derived by Gary Witus of Turing 
Associates. At present, first principles visual contrast 
models are not widely available or validated in general. 
The Witus empirical model is restricted to military ground 
vehicles with standard forest camouflage paint, in terrain 
with fields of dry grass and deciduous trees and bushes 
with green leaves. At present, the model does NOT 
account for any range-dependent atmospheric effects. 

The model automatically calculates the luminance of the 
designated surround and three regions of the target 
signature: 

1. The lower glacis (or front grill below the hood) and 
its shadow (if any), 

2. The side of the vehicle and its shadow (if any), and 
3. The upper glacis, upper deck and roof or top of the 

vehicle. 

The model automatically calculates the contrast ratio of 
each of these regions relative to the surroundings. 

The final output, the average contrast ratio, is the 
weighted average of the contrast ratios of the three 
regions, weighted by their proportion of the total 
presented area. 

Visual Contrast Model Derivation 

The model is based on measurements made from the 44 
Search_2 high-resolution digital images. The image set 
contains 9 types of military vehicles (US and Soviet, 
tracked and wheeled, thin-skinned and armored), in a 
variety of locations and postures at ranges from 500 to 
5,000 meters. Images were taken with a 10X lens, and the 
35 mm slides were digitized at 6K by 4K pixels. The 
atmosphere was clear. In six of the 44 scenes, the target 
was in the shadow of a cloud. Dr. Lex Toet of the TNO 
Research Institute in the Netherlands provided the digital 
images and data to convert gray-scale to luminance 
values. 

These scenes were staged to be representative of military 
targets in field positions. It is very important to observe 
that the targets had a very non-uniform appearance. 
Typically the upper glacis and top of the vehicle were 
very much brighter than the lower glacis and side, and 
much brighter than the tree and bush foliage. The lower 
glacis and side (if self shadowed) and shadow on the 
ground were typically darker than the tree foliage. 
Directly illumined sides were much brighter than self- 
shadowed areas, but typically darker than the roof or 
upper glacis. For these reasons, the average luminance 
over the target is not a sensible basis for a target signature 
metric. 

The simple alternative approach taken was to divide the 
vehicle signature into three regions, compute the 
luminance and relative area of each of these three regions, 
as a function of illumination angle and viewing angle. 
For each image, the average gray-scale value was 
measured for the following three regions: 

1. The front (rear) lower glacis or grill, front 
tracks/tires, its shadow, and frontal gun/turret shadow 
(if any); 

2. The side of the chassis and turret (or hull and cab), 
side tracks/tires, and their shadow if any; and 

3. The top roof, upper deck, and upper glacis. 

The reason for selecting these regions lies in the geometry 
of the vehicle. The regions were (mostly) contiguous, and 
had about the same apparent luminance. This 
organization explained most of the variation in target 
pixel luminance. The average within-region gray-scale 
standard deviation was 10 (out of 255), whereas the 
average gray-scale standard deviation of the overall 
vehicle luminance was 35 (out of 255). 

120 



The average gray-scale values for directly illumined 
grass, shadowed grass, tree/bush foliage, and local target 
surround were also measured. For each image, the target 
aspect, lookdown angle, illumination angle relative to the 
target orientation to the observer, and whether or not the 
vehicle was in a cloud shadow were recorded. 

From these data, the proportion of target area represented 
by each of the three regions, as a function of lookdown 
angle and target aspect were computed. The average gray 
scale value for each of the three regions was computed for 
each of the 4 illumination angle conditions (note that 
since the illumination angle designation is relative to the 
observer viewing angle, there is no need for a matrix of 
illumination angles and target aspect angles). 

The model uses the gray-scale to luminance equation and 
constants contained in the TNO report "A high-resolution 
image data set for testing search and detection models," 
TM-98-A020, to calculate the average luminance of the 
designated surround and each of the three target regions. 

The contrast ratio for each target region is simply the 
absolute value of the target region luminance minus the 
surround luminance, divided by the surround luminance. 
The average target contrast is simply the weighted sum of 
the contrast of each of the three regions. The weights are 
simply the proportion of the presented target area 
represented by each region. 

Note that this is not necessarily the best or right way to 
measure contrast. It is the approach that most closely 
resembles the standard Army contrast ratio formula 
(target minus background, divided by background), 
extended to account for the fact that the targets consist of 
distinct regions with very different luminance. If the 
target had a constant luminance, this would reduce to the 
standard Army contrast ratio form. 

Once the vehicle signature is determined, for the 
operating, environmental, and atmospheric conditions of 
interest, the probability of detection is calculated. Several 
additional data items are required for these calculations. 

These data items include: 

Threat Sensor Performance Data 
Range from Sensor to Target 
Atmospheric Effects 
Terrain Data to Calculate Line of Sight (LOS) 

The probability of detection calculations begin with a 
check to determine if the threat sensor has line of sight 
with the target system. An element of error in the location 
of the threat is introduced to determine if a threat system 

within 1300 meters of the of the user determined threat 
location has line of sight with the target. If the threat has 
LOS then the probability of detection calculations are 
continued. If not, then the probability of detection is zero 
for that particular threat location. Once LOS has been 
determined, the probability of detection is calculated. The 
ACQUIRE methodology is used for man-in-the-loop 
sensors to determine the number of resolvable cycles on 
target For man-out-of-the-loop sensors, other 
methodologies to determine detectability will be used. 

Acquire 

The ACQUIRE methodology uses vehicle presented area, 
atmospheric effects, vehicle signature, and the threat 
sensor performance (minimum resolvable contrast vs. 
spatial frequency curve) to determine the number of 
resolvable cycles on target. After the number of 
resolvable cycles on target has been calculated, an "N50" 
value is incorporated to determine the probability of 
detection. The "N50" value is the number of resolvable 
cycles on target necessary to detect the target 50% of the 
time. 

The ACQIRE calculation yields a probability of detection 
for a specific sensor-target pairing under specific 
environmental and atmospheric conditions, and for 
specific vehicle operating conditions. This probability is 
displayed to the user by the SSAA in both a digital and 
graphical manner. 

Figure 6  Clear Line of Sight and Detection 

Figure 6 illustrates a typical SSAA display . In this case, 
the blue vehicle is represented by an Abrams and the red 
vehicle by a Russian T-90 tank. In this case, the 
probability of detection of the Abrams by the T-90's 
Generation 3 FLIR is 0.49 at a range of 4904 meters. 
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Figure 7  No Line of Sight 

Figure 7 illustrates that under the same conditions, the 
Abrams would not be detected by the T-90 at bearing 
75deg. and range 6255 meters because there is no line of 
sight between the vehicles. As the Abrams traverses the 
field, the probability of detection varies and is displayed 
on the SSAA screen for each threat selected. 

Future Plans 

Future SSAA enhancements will include a route planning 
capability as part of the overall mission planning mode. 
The SSAA route planning will be unique in that the 
acquisition probabilities of the threats will be 
incorporated with the standard route planning parameters 
such a line-of-sight to the threat, distance, terrain, etc. 

If there are several routes that are possible and each 
exposes the vehicle to acquisition for some amount of 
time, t, and each at a different range then one can imagine 
trying to select between a route having a lower Pd for a 
longer exposure time versus a route yielding a higher Pd 

for a shorter exposure time. This yields an exposure 
metric which is the integration over the total exposure 
time of the product Pd(t)-dt on the route. Other factors 
which must be considered are how the vehicle cross track 
speed impacts Pd because clearly the total exposure time 
could be minimized by an increase in vehicle speed where 
possible and potential search times for the field of regard 

In summary, the SSAA provides the warfighter with a 
powerful and unique route planning tool which 
incorporates the probability of acquisition by threat 
sensors, and will contribute to the US Army's goal of 
information superiority. 
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ABSTRACT 

There are a variety of efforts attempting to integrate 
unmanned vehicle systems into the Army array of tools 
and weaponry. Military planners for Force XXI and Army 
After Next are busy assessing the viability and potential 
usability of unmanned vehicles of all types - land, sea, 
and air - in the near, mid and far term. But exactly how 
can we create a facility that can offer baseline 
performance metrics and assess a wide variety of UGV 
platforms, configurations and weight classes? This paper 
will present efforts to develop a Systems Integration 
Laboratory (SIL) environment which will focus on testing 
and validation of a variety of candidate small and mid- 
sized unmanned ground vehicles emerging from the 
various Department of Defense (DOD) UGV programs. A 
description of the SIL concept for UGVs will be provided 
as well as how it is being applied in the Intelligent 
Mobility Robotics program at the US Army Tank- 
automotive and Armaments Research, Development and 
Engineering Center (TARDEC). The test areas will be 
described as well, including the Supervised Navigation 
Test area, the Modeling and Simulation room and the Hot 
Bench & Test Integration Room. The paper will also 
summarize the expected activities planned to be 
conducted in the lab, the range of unmanned prototype 
vehicles, which may be tested in this facility, and various 
modeling and simulation concepts planned for the future. 
Finally, a description of what makes this research facility 
unique to DoD will be offered. 

INTRODUCTION 

The notion of using robotic technology on military ground 
vehicles has been seriously considered for only during the 
past 20 years or so. The focus of implementing these 
unmanned vehicle systems - whether they are on the 
ground (UGV), in the air (UAV), or underwater (UUV) - 
is to act as either a force multiplier, or to keep soldiers 
from performing dangerous missions. These kinds of 
uses are becoming increasingly important given the 
increasing social and political demands for a minimum 
amount of casualties in any military operation. The larger 
question   is   how   to   implement   these   technologies 

efficiently and have the military leadership gain 
confidence in the ability for using these unmanned 
vehicles to act as an additional vehicle or weapon for the 
individual soldier. A major transformation of military 
tactics and structure will commence once unmanned 
vehicles become commonplace and are considered a part 
of the typical military unit. 

PRESENT AND FUTURE ROBOTIC CONCEPTS 

Unmanned vehicle systems are primarily being pursued in 
the military services because of their perceived ability to 
assist the solider in the field in performing assigned tasks 
in some manner. DOD is developing of an array of 
unmanned vehicle concepts for three primary reasons. 
The first reason is to minimize and reduce injury risk to 
all soldiers. Unmanned systems will increase individual 
soldier and system survivability by reducing their 
exposure to battlefield hazards. Mission mine-clearing 
tasks and information scouts. 

The second reason for development is to use these 
unmanned systems as a force multiplier. Unmanned 
systems will increase force capabilities in several 
categories, including lethality, survivability, situational 
awareness, force protection and sustainability. 

Lastly, the biggest potential long-term payoff for 
development and implementation of UGV systems is the 
prospect of having a vehicle or weapon that requires only 
minimal direct human involvement after being assigned a 
task or mission. This, in fact, is the definition of 
autonomous mobility - being able to internally be given a 
task and complete it without human intervention. 
Unfortunately, this type of system is still to be fully 
realized [1]. Unmanned systems will likely be very 
specialized and situational dependent. However, they will 
have a variation of abilities and will likely be employed 
across the range of military operations. 

Current DOD efforts 

Most advanced development projects related to unmanned 
ground vehicle robotics have been consolidated under the 
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Joint Robotics Program (JRP) directed by the Office of 
the Secretary of Defense (OSD). JRP is responsible for 
launching the development of first generation UGVs and 
related technologies that are deemed critical to follow-on 
systems. Their goal is to develop and field a family of 
unmanned ground vehicle systems for a range of military 
applications in accordance with user requirements. These 
vehicles range in size from microbots - which can fit in 
the palm of a person's hand - to teleoperated tanks, such 
as the Turretless M-60 Panther, which is currently being 
used to detonate Anti-Personnel mines in Bosnia. 

The long-term goal is to mature critical technologies to 
move robotic applications forward from teleoperation— 
where a human directly controls UGV functions — to 
semi-autonomous and autonomous functioning. Semi- 
autonomous performance of a UGV is a vehicle that 
functions with the operator only in a supervisory role and 
thus able to control multiple UGVs concurrently. 
Autonomous performance of a UGV would be realized 
when a set of instructions would be carried out without 
human interaction during the task. 

TARDEC Robotics programs 

Demo III is the cornerstone of the Joint Robotics Program 
UGV Technology Enhancement and Exploitation 
(UGVTEE), tech-base, program which is managed by the 
U.S. Army Research Laboratory (ARL) and coordinated 
through TARDEC. The goal of the Demo III Program is 
to develop technology required to demonstrate a small, 
survivable unmanned ground vehicle capable of 
autonomous operation over rugged terrain as part of a 
mixed military force containing both manned and 
unmanned vehicles. The vehicle (see Fig. 1) will weigh 
approximately 2,500 lbs., and be able to maneuver cross- 
country at speeds of up to 20 mph during daylight, 10 
mph during darkness, and up to 40 mph on roads during 
daylight. This will allow it to successfully operate with a 
mixed maneuver force during tactical operations. 

Figure 1 Demo III Experimental Unmanned Vehicle 

Figure 2 Tactical Mobile Robot MOUT concept: 
10 robots to clear 20 rooms in 60 minutes 

Tactical Mobile Robotics (TMR) is a DARPA funded 
program to develop advanced mobile robotic technologies 
for man portable platforms - targeted at between 10 and 
40 pounds — and integrate them into systems which will 
be demonstrated in tactical operations. The primary 
technologies to be developed are robust obstacle 
negotiation, fault tolerant autonomy, multi-platform 
perception, and denied area mapping. The program 
objective is to design, develop, and demonstrate the use of 
small robot teams in realistic, tactically significant 
scenarios. Emphasis is placed on man portable platforms 
working in complex, obstacle intensive environments and 
denied areas. The primary mission profiles are 
reconnaissance oriented, with collateral value realized 
through delivery of specialized mission payloads such as 
communication relay and mobile obscurant (smoke) 
projection. A variety of more sensitive mission payloads 
are also anticipated. 

Intelligent Mobility Robotics program 

The TARDEC Intelligent Mobility (IM) robotics program 
is designed to complement and extend survivability and 
mobility requirements of several DOD robotics programs 
such as Demo III and Tactical Mobile Robots. Primary 
program objectives are to develop enhanced mobility and 
survivability technologies and subsystems for UGV 
programs in locomotion, machine perception and 
supervised navigation. IM will also augment present 
navigational system limitations by developing "smart" 
drive system technologies via feedback control at its key 
elements. The work during the first year of the program 
will focus on vehicles between 100 and 1,500 pound in 
size. Utah State University has developed two vehicles in 
the first year of the program. A sub-scale 95-pound omni- 
directional vehicle (ODV) called Tl (see Fig. 3) was 
delivered in November 1998, while a mid-scale ODV 
approximately 1,250 pounds called T2 (see Fig. 4) was 
demonstrated to the Government in June 1999. 
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Figure 3 Intelligent Mobility Tl concept vehicle 
developed by Utah State University 

The essential vehicle elements of both concept vehicles 
are the running gear configuration, command and control, 
and path planning. These systems interface with the 
external world via the soldier interface and digital 
battlefield communications. The vehicle world model 
will use a tactical decision aid that exploits situational 
awareness to determine vehicle operation on the 
battlefield. Critical elements of the situational awareness 
algorithms will the synergism between intrinsic mobility 
and signature management. The tradeoff between 
moving undetected while avoiding and negotiating 
obstacles will give tactical flexibility for the UGV to 
accomplish its mission. 

Figure 4 Intelligent Mobility T2 concept vehicle 
developed by Utah State University 

The sub-scale Tl contains an in-hub electric drive system 
where each wheel has two degrees of freedom (2-DOF). 
The wheel hub assembly includes the electric motor, 
processor board, batteries and an optical slip ring, which 
connects the drive electronics to the on-board vehicle 
controller. The aggregation of six independent wheels 
using an intelligent controller gives the Tl vehicle omni- 
directional steering (ODS) capability. This unique 
concept allows the UGV to perform more complex 
maneuvers such as right angle turns that are currently not 
possible with an Ackerman steering drive system. Future 
UGV systems will deploy intelligent wheels with z-axis 
or 3-DOF allowing the vehicle chassis a 6-DOF motion 
capability. 

The mid-scale T2 also demonstrates the off-road mobility 
and survivability advantages of cooperative multi-vehicle 
command and control. A number of iterative changes 
have been incorporated into the T2 design including 
moving the batteries and power conditioning equipment 
out of the wheels and into the vehicle chassis. The T2 is 
an electric vehicle with no internal combustion engine 
providing power as in hybrid electric systems. However, 
the original ODV concept remains intact. 

SIL DEVELOPMENT 

The concept of a systems integration lab (SIL) has been 
traditionally used in evaluating complex systems such as 
vehicle electronics and hydraulics. A SIL is usually set up 
to allow a "coupling" of prototype system elements. This 
can be combining two separate hardware technologies, or 
by joining a piece of hardware with software. For 
experimentation purposes, the remaining system elements 
are simulated via software. Traditional SIL applications 
also include the ability to exercise the system in a mission 
realistic manner. Prototype hardware is individually 
brought online until the entire system is functioning 
together. It is also important that the test vehicle be in 
proximity to the SIL to allow consistent evaluation of 
system characteristics during the transition of hardware 
and software from the SIL into the vehicle. 

TARDEC has also designated approximately 4,300 sq.ft. 
for construction of a SIL to extend the capabilities of the 
Intelligent Mobility robotics program. This facility will 
include three major areas for laboratory testing, including 
a supervised test navigation area, a hot bench and test 
integration lab, and a modeling and simulation lab. 

PROPOSED LAB ACTIVITIES 

The SIL was created to perform developmental testing 
and evaluation of a variety of small-scale UGV systems, 
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focusing on mobility and survivability technologies. The 
primary areas for performing these tasks include a 
supervised navigation test area, a hot bench & test 
integration room, and a modeling and simulation room. 
Besides the Intelligent Mobility program, it is foreseen 
that it will extend the capabilities of a variety of parallel 
DOD sponsored UGV research efforts, including the 
aforementioned Demo III and TMR programs. 

The laboratory environment will provide ample 
opportunity to work with these types of vehicles and 
related technologies in a controlled environment. The 
Intelligent Mobility program is also investigating 
opportunities to partner with a military user and/or 
MOUT (Military Operations in Urban Terrain) facility in 
order to extend the ability to acquire field data via user 
interactions with UGVs. Design of the lab has been 
completed. It is expected that the facility will be 
operational in FY2001. 

Supervised Navigation Test Area 

An obstacle course will be constructed in the supervised 
navigation test area. The course will include several 
positive and negative obstacles for small-scale unmanned 
vehicles. Such items as an indoor rock bed, stairs, and a 
variety of soil types would be incorporated Several 
vehicles can then be ran through the course and graded for 
ability and speed of movement throughout. Testing of 
navigation and locomotion over these standardized 
mobility obstacles will be available in this facility. 
Obstacle detection and avoidance technologies can also 
be validated here as well. 

An endurance test will also be developed. This will gather 
data on the total distance a UGV travels before losing its 
ability to move, operating time, and the resulting average 
speed. Studies may be performed to determine what the 
nominal operation time might be for any given mission. 

Traditional test procedures from legacy (manned) vehicle 
systems will be used as the starting baseline. Many can be 
implemented with either little or some adaptation for 
unmanned ground vehicle systems. From this beginning, 
test procedures specific to the testing and validation of 
unmanned vehicle systems may be developed. The goal is 
to provide data for various types of UGV model 
validation. 

The following are examples of some candidate parameters 
to be considered for test and validation issues in the test 
area: 

Physical dimensions: Validation and assessment of 
platform characteristics to evaluate, including but not 

limited to: length, width, height, ground clearance, 
weight, and ground pressure. 

Tractive Effort: The ability of the vehicle to move its own 
weight. That is, does the vehicle have the traction and 
horsepower to transfer power from its powerpack to the 
ground for mobility purposes? This can be evaluated for 
both flat terrain and transverse grades/slopes. 

Forward/Reverse Speed: The movement of the vehicle 
and its maximum/minimum speed in forward and reverse. 
Vehicle acceleration and braking may also be evaluated as 
well. 

Steering: The minimum turning radius of the vehicle and 
type of steering employed. 

Trench crossing: A standardized trench can be developed 
and built based on the parameters of the vehicles to be 
tested. 

Vertical step: It is foreseen that UGVs involved a MOUT 
scenario will literally need to climb up and down steps 
between floors. A standardized step will need to be 
defined and developed. However, specific vehicle 
requirements will demand adaptation from that standard. 

Fording: Legacy vehicles are required to move through 
shallow bodies of water. It is not yet known what 
requirements UGVs will have, but should be considered 
in the SBL development. 

Power management. The location and use of power within 
the vehicle's operational budget is essential to the 
completion of the planned missions. The SIL may provide 
an opportunity to evaluate power generation, power 
storage, and power distribution. 

Actuators/Resolvers: Mechanical devices to move and 
devices to sense movement of those devices need to be 
tested in the SIL, particularly electrical and mechanical 
interfaces. 

Suspension: Vibration effects of the suspension will 
degrade sensor performance. Therefore, it will be 
necessary to evaluate its performance. 

Route following: A variety of sensor inputs such as 
navigation, stereo vision, map database should be 
evaluated for performance. 

Communications: System internal and external 
communications are essential to UGV functions: 
teleoperation and data bus for example. The SIL must be 
given the facility equipment and structure to allow for the 
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safe operation of external communications equipment 
during UGV performance evaluation. 

These are only a cursory list developed of the types of 
parameters to test and evaluate within the SIL [5]. The 
navigation test area will also be used to evaluate sensor 
suites for their perception performance on nominal UGVs. 
In this application, the sensors will be judged on their 
abilities to assist the vehicles in obstacle avoidance and 
obstacle detection. 

Hot Bench Test & Integration Room 

The Hot Bench and Test Integration room is envisioned as 
a place where researchers investigate individual 
components and subsystems of small-scale UGVs. An 
individual piece of vehicle hardware may be highlighted 
within a virtual UGV system, for example. Once isolated, 
it can be tested for performance off of the vehicle. 
Furthermore, new and unique technologies may be 
integrated in a similar fashion and its performance 
compared before it may be added to the UGV itself. This 
offers the ability to evaluate a variety of unique prototype 
technologies for increasing the mobility and survivability 
of small-scale UGVs. 

The area is also being considered to be a tool for both 
government and contractors to join together and test the 
compatabilities of variously independent subsystems. 
Since many contractors are pursuing the same goal, it is 
important for the Government to provide a facility to 
merge hardware and software concepts. 

Modeling and Simulation Room 

There are three basic areas of work envisioned for this 
aspect of the SIL. First, is the development of new 
engineering models. An example of this might be 
developing UGV-based terrain models for both small- 
scale and mid-scale prototypes and applying the results to 
assist the user community in determining how to 
strategically incorporate UGVs into their missions. 

Intelligent Mobility robotics personnel have already 
begun to review several mobility models such as NRMM 
to provide additional data. Most of the existing data has 
been developed for legacy vehicles. However, validation 
tasks have not been performed for vehicles roughly 1,000 
pounds or less. They also have not considered anything 
but man-in-the-loop scenarios. New models are 
anticipated to develop as a result from this effort. 

Secondly, is the chance to validate control algorithms mat 
will come along from developers. We anticipate using the 

Modeling and Simulation area in conjunction with the 
Supervised Navigation Test area to perform these tasks. 
Lastly is the potential for wargaming simulations. Since 
UGVs are a new vehicle class, in a sense, little is known 
in the user community to how to apply these best in 
accomplishing a variety of mission tasks. 

To assist the user, the Intelligent Mobility robotics 
program is actively seeking collaboration with the US 
Army Infantry School at Ft. Benning, GA. Ft. Benning 
offers the McKenna MOUT site for conducting infantry 
exercises. McKenna has seven buildings wired for video, 
sound and continual monitoring. Furthermore, it has an 
adjoining computer lab facility in place to track 
movement of soldier activity for experiment and review. 

Discussion is underway to have UGVs which pass muster 
through the Supervised Navigation test area operate in the 
MOUT facility and transmit the resultant data back to 
Intelligent Mobility for analysis. A potential mission 
would be to use the field data to assess how and if 
infantry goals for incorporation of UGVs are reachable. 

POTENTIAL COLLABORATIONS 

There are several potential collaborations for the 
Intelligent Mobility SIL. This includes the previously 
mentioned the US Army Infantry School at Ft. Benning, 
GA and assisting the user in updating the ORD for Man 
Portable Robotics Systems, which are classified in the 10- 
40 pound platform range. 

TMR offers the best opportunity for gathering a handful 
of different platforms in the near future. TARDEC has 
been named as the TMR robot repository, and as such, 
needs to provide storage and maintenance of the back- 
packable UGVs. The Intelligent Mobility STL offers a 
place not only for storage, but ample opportunity to 
perform additional test and validation on the systems. 

As part of the Demo III Concerted Technology Thrust, the 
SIL may provide unique technologies such as the Utah 
State omni-directional steering or the Intelligent Wheel 
system. There may be opportunity to merge some systems 
within the Hot Bench and Test Integration room. 

Other potential collaborations include dual-use 
applications sponsored by the National Automotive 
Center (NAC) for the 21s" Century Truck; UGV/S JPO 
efforts, and the potential for miscellaneous contractor 
work and Cooperative Research and Development 
Agreements (CRDAs). 
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INTRODUCTION 

Two military vehicles assigned to the Arkansas National 
Guard had accidents, resulting in one fatality, when a tire 
failed on each vehicle. Representatives of the U.S. Army 
TACOM Tank Automotive Research, Development and 
Engineering Center (TARDEC), in conjunction with 
Radian, Incorporated, arranged for the evaluation of 
additional tires from the accident vehicles. Testing was 
conducted at the TARDEC Tire Test Research Laboratory, 
utilizing thermal imaging technology/analysis developed 
under a dual military/commercial use project sponsored by 
the U.S. Army National Automotive Center, located in 
Warren, Ml. 

This paper will review the concept, technology approach 
and application results of the National Automotive Center 
sponsored dual use initiative, identified as the Thermal 
Imaging Inspection Station (TIIS), in conducting a real- 
time assessment of the condition and structural integrity of 
military truck tires. Particular emphasis will be placed on 
the analytical software developed by Signature Research, 
Incorporated in support of the project. This program, 
identified as "TireSoft", is the basis for the accurate, real 
time analytical capability of the TIIS system. The 
application approach and the mathematical basis for the 
program will be discussed in detail in the document, along 
with the specific evaluations and results achieved to date. 

BACKGROUND 

The National Automotive Center(NAC) is funding a Dual- 
Use Application Program (DUAP) to design and develop a 
Thermal- Imaging Inspection Station (TIIS) for the 
preventive detection of flaws or impending failure of 
bearings, brakes, and tires of military and commercial 
vehicles with Radian Inc and Signature Research as the 
performing contractors. These tests were performed on 
the large tire dynamometers located at Team Truck 
facilities at the Tank Command in Warren ,Mi. Aware 
that the NAC-Radian had been testing at this facility 
deterring tire signatures for the HMMWV tire, Team 
Truck requested that with the corporation of NAC , 
Radian,inc use the model thermal-imaging equipment, the 
improved software and their thermal physics expertise to 
participate in these tests to determine if one can resolve 
the cause of the failures might be due to some defect in 
the construction engineering or manufacture of the tire. 
Signature Research was asked to modify the original 
TIRESOFT program in order to make it more 
calibratable and less influenced by the instrument's gain 
and contrast controls so that any statistics developed by 
the software can be carried over into different 
experiments without loss of confidence in the results. 
This paper will describe the process we used to develop 
an in-situ calibration scheme whereby in-scene 
calibration targets can be used with confidence. Then we 
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will describe some of the results we obtained during the 
course of testing a variety of tires both good and bad, 
new and used. And the insight mat came to us as we 
reviewed the statistical data that was gathered. 

DEVELOPMENTAL WORK ON THE 
SOFTWARE: "TireSoft" 

TireSoft is a semi-autonomous application for detecting 
and analyzing the temperature of tires, brake areas and 
bearing areas as they move through the field of view 
(FOV) of the imaging sensor. TireSoft is integrated with 
the thermal sensor package creating a system for detecting 
tire defects. 

In practice the system is placed so that the tire sidewalls 
of moving vehicles will pass by the FOV. After minimal 
user set-up the TireSoft application continually analyzes 
the flow of images. A rolling wheel passing through the 
FOV will be autonomously detected and analyzed. The 
sidewall, brake area and bearing areas are all segmented 
in the software. If a fault is detected in any one of the 
three areas the image will be stored and an alarm will be 
set. 

TireSoft was jointly developed by Signature Research, 
Inc. and Radian. TireSoft is a C++ MFC application. 

smallest number of sets which are connected, disjoint 
from other connected sets and viable. 

The function "FindConnectedRegions" scans through the 
Tag Buffer and, for each nonzero tag, replaces it with the 
associated low tag. It also builds a list of connected areas. 
The resulting connected regions are bracketed by 
bounding rectangles. The height and width of the 
bounding rectangle are then compared to known 
tolerances. If these dimensions deviate too dramatically 
from the tolerances, the region is deleted and no analysis 
is performed on it. This is executed in function 
"EliminateUnusableRegions". 

SEARCHING REGIONS FOR TIRES 

Once the set of viable regions is defined, the function 
"LocateTire" iterates through the list of regions and looks 
for tire-like features. This means circular outer 
boundaries, annular sectors and concentric circles (for the 
tire, wheel and hub). The mechanism for accomplishing 
this search for geometric characteristics is to start on the 
region's bounding rectangle. On this rectangle thirteen 
points are computed: the one third, one half and two third 
distances along the left, right and top sides, as well as the 
four corners. From each of these points a ray is cast into 
the rectangle, vertically down from the top, left or right 
from the sides and at 45 degrees into the rectangle from 
the corners. 

SEGMENTATION OF THE IMAGE INTO REGIONS 

Initially the image is thresholded, meaning pixels with 
values between two tolerances are set to unity, and the 
others set to zero. Those set to unity are said to be 
"tagged", and these are to be partitioned into connected 
sets which are to be processed. Ultimately each 
connected region will have its own tag value. 

The routine assumes that the image is being processed 
one line at a time (left to right) from top to bottom. 
Basically, it looks at three tagged pixels: those to the 
West, NorthWest, and North. It assigns to the current 
pixel the value of the minimum 
tag of the three tagged pixels W, NW, & W. However, 
the MinTag functions will look for the minimum tag 
connected to N, W, or NW; not just the minimum of N, 
W, and NW. Thus for example suppose W = 400, N = 
300, & NW = 350. The current pixel will not necessarily 
be tagged with 300 because 400 may be connected to a 
tag value like 200. The number of tags is the number of 
connected sets. However, these sets are unioned (by the 
function "FindConnectedRegions") if connected, or 
omitted (by the function "EliminateUnusableRegions") if 
failing further tests.    The objective is to obtain the 

Note that the bottom side of the rectangle is excluded 
from these calculations. This is because in many 
instances the bottom of the tires are partially flat, to a 
degree that can skew the calculations. Each of the rays is 
tracked until it intersects the region, and as a consequence 
13 boundary points for the region are thus obtained. 

The first step is to determine if these boundary points, or 
some subset of them, essentially lie on a circular arc. 
There are 286 ways to choose 3 points from the 13, and 
so, since three points on a circular arc determine the arc's 
center, there exist up to 286 estimates for the hypothetical 
center. Great care must be taken in analyzing this data 
since actual tires may often not appear perfectly circular. 
For example, if the sensor's line of sight to the tire is 
slightly oblique the tire appears elliptical. Worse yet, 
another adjacent tire or one across the vehicle may distort 
the target tire's region. 

Calculations are performed to seek out centers that are 
outliers. Ultimately the best ten are averaged to get the 
candidate center. The radius is now that of the tire. 
Circular templates with variable radii are now fit within 
the outer circle to denote the wheel and hub. This can be 
done automatically by examining fluctuations in pixel 
intensity or the user can fit the templates manually. 

130 



This laborious procedure was implemented as h performs 
extremely well in the presence of significant amounts of 
clutter and noise. 

riRESOFT CALIBRATION 
The sensor graylevels are transformed to engineering 
units using a two point calibration process. 

For calibration purposes the emissivity e(#) of all of the 
scene elements are assumed to be unity. This assumption 
is based on the premise that the sensor does not have 
knowledge of the emissivity of each instantaneous field of 
view, BFOV, and therefore the sources are assumed to be 
blackbody radiators. The resultant measured temperature 
is an apparent temperature. 

The general equation for transforming gray levels, n to 
radiance values, L(TJ), is a linear relationship where 

L(rj) = mn+ b 

over the spectral bandpass, fl(8), of the sensor. That is, 

UJJ)=   IO   R(8)L(8J)d8 (1) 

for a zero distance source and where L(8, T) is the Planck 
function. The total spectral emission by a blackbody per 
unit area into the hemisphere is given by the Planck 
function 

La, {8,1) =Bcr»(«7) 
tf(8 

2BC, 
C2/ST 

(2) 
1) 

where C, = 0.59544 x 108 W • <W/ m2 and 
C2=14,388<Dm°K 

For two black bodies imaged on the same settings at 
sensor gain setting Gi and sensor offset setting Vi and the 
atmospheric transmission is unity (short range 
approximation) then over the bandpass of the sensor 

Lbi(ti) " mvn, + bv 

and 

Lbiil) = rnvn2 + bv 

where values for Ln {n) and IM (r/) are computed using 

equation (1). Solving for mvand bv 

mv -  Lb2 - Lbi, bv = rj2Lbi - 7],Li M (3) 
*li-   V> 

In summary the calibration procedure shown in the right 
half of figure A is as follows. 

The Calibrator Object Figure A - Calibration Matrix 
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TEST METHODOLOGY 

TEST TIRES 
The established thermal signature of a new, high-quality 
HMMWV tire determined by the NAC- 
Radian TIIS program was designated as a "control", so 
that results of tests with the 5-ton truck tires could be 
compared with those for the HMMWV tire. The 
HMMWV tire is similar in construction, i.e. it is a radial 
tire, but differs from the truck tires in size. 

Two 5-ton wrecker truck tires were tested: one was from 
the right rear and the other from the right intermediate 
rear of the M939A2 that had a tire failure in June 1998. 
To the naked eye, both test tires appeared to be in 
excellent condition: treads were not overworn and no cuts 
or abrasions were visible. They had a recorded mileage 
of 7,890 miles of usage. Both were Michelin X-radial 
tires with the characteristic heavy, military, off-road bar- 
type tread. The control and test tires are identified in 
Table 1. 

TIRE DYNAMOMETER 
The tire dynamometer (Figure 1) is located in a testing 
chamber and is operated remotely from the adjacent 
control room during testing. Steel-wired windows 
between the control room and the test chamber permit 
operators and observers to monitor the tests. A video 
camera mounted in the test chamber permits remote, real- 
time observation via video monitor and it also preserves a 
record of each test on videotape. 

Tire Test Research Lab's tire-testing apparatus comprises 
three major components: a mounted steel drum, a tire 
mount, and a hydraulic ram. 

Ambient temperatures in the test chamber were: 
Control Tire        Start: 79°F End: 81°F 
Tire 1 Start: 72°F End: 75°F 
Tire 2 Start: 77°F End: 83°F 

Hydraulic Ram 
Tire loading is accomplished by a hydraulic ram that 
forces the tire against the drum as it is rotating. The ram 
is calibrated in total pounds of pressure, or load. 

The ram is a large framework, with a guard plate mounted 
on top, that moves forward as one unit. The ram is shown 
here from the point of view of the "free" side of the tire to 
be tested. It is the arm of the ram that forces the tire 
against the drum. 

THERMAL IMAGING INSPECTION STATION (THS) 
The THS as currently configured comprises a thermal- 
imaging system, a calibration apparatus, a computer 
system, a video monitor and recorder, and a specially 
developed software package. 

Thermal-Imaging System 
The thermal-image acquisition device used for this test 
was a Cincinnati Electronics IRRIS-160ST Indium- 
Antimonide infrared focal-plane-array camera adapted for 
the TIIS. It was equipped with a 50-mm KRS-5 lens. 
The other component of the thermal imaging system was 
a remote control keypad linked to the camera via cable. 
The camera was placed on a tripod, in the test chamber, 
and located at the closest distance where the entire side of 
the rotating tire could be captured in the image. During 
tests on the tire dynamometer, however, a portion of the 
tire is blocked by the framework of the ram. This 
limitation is consistent for all tests, including those of the 
control tire. Also, the rotational velocity of the tire during 
the 33 milliseconds it takes to capture an image does bias 
the data. The net effect is to slightly smear the image 
pixels during any exposure. The manner of coping with 
this limitation is a data analysis issue and is discussed 
below. 

STEEL DRUM 
A large, steel drum, or flywheel, with a flat, unpolished 
steel surface is mounted so that it may be 
rotated by a heavy-duty electric motor (mounted on the 
framework above). Rotation speed is adjusted by the 
gears of the motor. The drum, mounting frame, and motor 
can be seen in the center of Figure 1. 

Tire Mount 
The test tire is fitted with a special hub for the axle mount 
that holds the tire in place between the rotating drum and 
the hydraulic ram. The hub is bolted to the axle. The 
axle is mounted in an arm that extends from, and is part of 
the hydraulic ram. 

The camera is capable of capturing 30 images/second; 
however, the computer and software can only record 12 
images/minute. (Note: A faster computer could capture 
more images/minute.) An image consists of 19,200 pixels. 
Each pixel has an intensity value between 0 and 4,096. 
These values are translated into temperature readings by 
software within the camera. 

Blackbody Calibration Source 
A Mikron 310 Blackbody Calibration Source was placed 
within the camera image frame, in the area of the ram that 
was blocking the view of the tire. The Blackbody—a 
small box that houses the controllers, heater, and cooler— 
is part of the thermal scene. The Blackbody was set to 
provide a specific, consistent source of thermal heat, 
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accurate to V 0.2° C after stabilization. (Note: it takes 
approximately 30 minutes to stabilize the Blackbody.) 
The operator of the TIIS used it to calibrate the system by 
means of computer. 

Computer System 
The computer was a Micro Systems 133MHZ Pentium 1 
PC with a 1.2 Gb hard drive and a MicroScan 5V/AOI 
monitor. The system included an Iomega 100 external 
Zip drive connected between the parallel port and the 
Hewlett-Packard Desk Jet 820Cse color printer. 

Images were captured remotely by the computer system, 
which was located outside the test, outside one of the 
garage-type doors located behind the hydraulic-ram end 
of the several tire dynamometers in the chamber (on the 
opposite end of the test chamber from the Tire Test 
Research Lab control room). TIIS operators had no visual 
access to the chamber during testing. 

The computer monitor displays the thermal images in 
real-time, at a 30-Hertz video rate, while they are 
processed in the computer. 

Video Monitor and Recorder 
In addition to the computer system, a JVC S-5300U S- 
VHS tape recorder and a Magnavox color monitor were 
connected to the system for real-time monitoring and 
recording. Playback from the tape recorder degrades the 
image quality approximately 50% and is used simply as a 
visual record of the tests. 

Software 
The software of the TIIS is a Radian lnc./Signature 
Research, Inc. jointly developed tire diagnostic software 
called "TireSoft". TireSoft has the unique ability to 
perform a statistical analysis on an exact image area of the 
tire being tested. The software is designed to divide an 
image into three donut-shaped concentric areas with 
increasing radii. These areas are designated Zone 1 (the 
hub), Zone 2 (the wheel), and Zone 3 (the tire). 

The boundaries are user defined; they can be sized to fit 
the tire exactly. Unwanted elements in a particular zone 
can be excised and calculations made from the balance of 
the pixels in the zone. TireSoft performs four functions 
on each zone. The software: 

• reads the one pixel that has the highest 
temperature, 

• reads the one pixel that has the lowest 
temperature, 

• calculates the mean temperature of all pixels 
within the zone, and 

• calculates the standard deviation. 

All data reported for the tire tests was recorded from Zone 
3. 

TIRE TESTS 
The recommended inflation pressure (psi) and load 
weight (ms) are imprinted on the sidewall of every tire 
(Table 1 details the physical characteristics of the Control 
and Test Tires). The control tire had been tested at the 
recommended pressure and a load of 2,000 lbs. Tire 1 
was tested at the recommended pressure and load. Table 2 
is a summary of the values for the variables in the tests 
described below. 

Test of Control Tire 
The control tire had been tested at a road speed of 35 mph 
with a load of 2,000 lbs and an inflation pressure of 50 
psi. The thermal-image data for this control tire was 
gathered after 1 hour of running time. An image was 
captured in digital form every 60 seconds and stored 
directly on the portable Zip drive. 

Test of Tire 1 
Tire 1 was tested at a road speed of 35mph with a load of 
9,920 lbs and an inflation pressure of 100 psi.   It was 
tested for 1 hour and 27 minutes before it failed.   The 
thermal-image data for Tire 1 was gathered every 60 
seconds. 

Test of Tire 2 
Tire 2 was initially run at a road speed of 35 mph with a 
load of 9,350 lbs (rated load is 9,920 lbs) and an inflation 
pressure of 80 psi (standard for this tire is 100 psi). It was 
tested for 58 minutes at that setting. At the 58-minute 
mark, the road speed was increased to 45 mph. After a 
further 29 minutes ( at 1 hour and 27 minutes), the road 
speed was increased to 55 mph. After an additional 30 
minutes ( at 1 hour and 53 minutes), the load was 
increased to 9,900 lbs. The tire failed 9 minutes later (at 2 
hours and 2 minutes). Thermal-image data for Tire 2 was 
also gathered every 60 seconds. 

STATISTICAL ANALYSES 
In order to account for the 33-millisecond time lag to 
record an image of a rotating tire, Radian integrates data 
from a number of frames and then analyzes the pixel 
variance in the images. Also, from experience gained 
during the ongoing NAC-Radian program, it had been 
learned that a series of 30 images captured at a rate of 
one per minute would record many instances of all areas 
of the tire being testing, including those blocked out by 
the dynamometer ram. The mean standard deviation (SD) 
was calculated for 30-image data samples on all three 
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tires. Then, the mean SD of the control tire was compared 
with the mean SD of each of the test tires. 

RESULTS 

The term "signature" is used in thermal imagery to 
connote an identifiable thermal pattern. Most often the 
term has been applied to the identification of whole 
objects, such as various types of tanks and trucks, or to 
distinguish the presence of people and animals in dark 
environments. The term is used in describing thermal 
images from tire tests, not to identify tire types, but to 
describe the visual pattern that becomes apparent as the 
tire heats up during testing. 

A good tire has a thermal pattern, or signature, that shows 
that the temperature is reasonably consistent after the tire 
reaches its operating temperature. By "operating 
temperature", we mean that the tire has reached a 
temperature that remains stable over 3-4 minutes of 
testing. During the ongoing NAC-Radian program, in a 
series of tests of new tires of various types—including 
several like HMMWV radial tires, one of which was the 
control tire—it was established that good tires generally 
stabilize after about 30 minutes of testing. 

In that same series of tests, problem tires exhibited a very 
different pattern. For example, a tire mat had broken 
cords, not apparent externally, showed a thermal pattern 
that diagnosed the problem (Figure 2). It should be noted 
at this time that the criteria for selection of tires included 
the following: tires must be operational, they must hold 
air, and they had to be driveable, in other words, tire tests 
were not run on tires with any readily apparent, visual or 
functional flaws that would render them incapable of 
operation. Tires that are damaged, flawed, or unevenly 
worn may show "hot spots" or "cold spots" that cause the 
temperature to fluctuate or continue to rise rather than to 
stabilize, resulting in an elevated standard deviation. 
Another test of a tire with a bulge, visible only on close 
examination, might have been expected to reveal a hot 
spot where the bulge appeared on the series of images, but 
instead the bulge was indicated by a "cold spot" in the 
signature (Figure 3). Preliminary analyses of these tires 
shows a mean SD>1, comparable with the degree of 
instability of the tire. 

THERMAL-IMAGE DATA FROM TIRE TESTS 
Data showing the mean pixel value, standard deviation, 
and maximum and minimal pixel values are available for 
each image recorded. The Blackbody was calibrated to 
40°C before the beginning of each test. 

Test of Control Tire 
Baseline data on the control tire, a new HMMWV radial 
tire shown to be of good quality, had been obtained 

during earlier tests at the Team Truck facility in October 
1998. Thermal measurements revealed a steady 37°± 1°C 
as the mean operating temperature of the control tire. 

Figure 4 is a typical image from the test of the control 
tire, captured after the sidewall temperature had 
stabilized. It illustrates the signature of the control tire 
after 60 minutes of testing under the conditions described 
in the Methods section above. The smaller circle in the 
lower right-hand corner shows the thermal image of 40°C. 
There are no discernible hot or cold spots. That the color 
is distributed rather evenly over the entire image indicates 
that there is little fluctuation in the temperatures within 
the area. 

Test of Tire 1 
Tire 1 revealed "hot spots" from early on in the tests, as 
soon as the tire began to warm up. By 09:58, 5 minutes 
after the start of the test (Figure 5), the tire showed 
evidence of a signature not found in a good tire. A band 
of higher temperature is noticeable in the sidewall. By 
10:03, 9 minutes after the start (Figure 5), hot spots are 
also evident in the tread. At 10:30, the hot spots are more 
pronounced. The explosion that occurred when the tire 
failed, at 10:42, was viewed on the real-time monitors. 
Rupture is first visible to the camera in the image taken at 
10:43 (Figure 6). 

Test of Tire 2 
The thermal image of Tire 2 also showed hot spots after 
only 5 minutes of testing. Figure 7 shows a wide band of 
heat in the sidewall as well as heat spots in the tread. 
After 1 hour and 51 minutes, the sidewall can be seen to 
be excessively hot. 

STATISTICAL RESULTS 
The mean temperature of the control tire warmed <1°C 
during that period, while both test tires heated more 
rapidly. Also note the temperature variability, as 
expressed in SD, increased dramatically for the test tires 
(Chart 1). 

Table 3 is a 30-image sample of data on the control tire, 
captured after 82 minutes of testing (11:01-11:30). The 
timing of the 30-frame sample was chosen to illustrate the 
thermal signature of a good tire well after the tire had 
warmed to a stable operating temperature. The mean SD 
was 0.552. The SD was not >1 during any of the 30 
minutes of testing. 

Table 4 is the thermal-image data accumulated during the 
final 30 minutes before Tire 1 failed. The 7-sec time gap 
between 10:19:37 and 10:20:44 shows an interruption in 
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data capture while the operator was reviewing the data. 
Again, at the first indication of possible tire failure, the 
operator reprogrammed the data capture rate from 1 
frame/minute to 1 frame/5 sec, which caused the time gap 
between 10:40:44 and 10:44:11. {Note that the consistent 
data capture for the control tire is for a period well after 
warm up, during which time the operator had had ample 
time to adjust contrast and other variables to assure the 
most revealing image for that tire. And, when the 
temperature is relatively stable and no problem area is 
presenting, the operator does not have a need to examine 
the data or to adjust the image in an effort to "see " and 
record more clearly what may be happening.) These 
operator actions had no other effect on the data than "time 
data was stored". 

The mean SD was 2.83. Data for two images following 
the failure are given to show the effects of the failure. 

Table 5 shows the thermal-image data accumulated 
during the final 30 minutes before Tire 2 failed. 
Variations in the number of seconds from one image 
frame to the next were caused by interruptions in data 
capture while the operator was reviewing data. 

The mean SD at failure was 4.38. Data for two images 
following the failure are given to show the effects of the 
failure. 

Figure 8 is a graphic representation of the variations in 
standard deviation for each thermal image in the sample 
data of the control and test tires. 

CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS    AND    LONG    TERM    PROGRAM 
VISIONS 

There is a symmetry between the tire image and the 
analysis of thermal distribution as expressed in standard 
deviation, i.e., the thermal image that displays elevated 

heat zones visible on the TI1S monitor will have a mean 
SD>1 while images displaying an even heat distribution 
will have a mean SD<1. From our limited tests, we 
conclude that a mean SD>1 is associated with a faulty 
tire. 

PROGRAM VISION 

In cooperation with industry the potential exists to 
develop and build a low cost imaging system with 
adequate memory chip capacity to accommodate the 
enhanced "Tire-Soft" program. This tool would be placed 
in the hands of the military or commercial maintenance 
supervisor or maintenance/inspection personnel, and be 
used by these individuals as a tool to conduct efficient, 
cost effective, real-time maintenance analysis of truck and 
trailer components. This approach has significant 
implications with respect to military or commercial fleet 
management/operating costs, for vehicle readiness and 
reduction of downtime, and probably most significantly, 
for vehicle operator and roadway safety. This packaging 
of commercially available technology, in combination 
with Radian, Signature Research, Inc., and the University 
of Tennessee developing custom software, designed for 
ease of use and to be user friendly and give an accurate 
real-time interpretation of the captured component 
thermal image, will take advantage of technology 
development by identifying and precluding truck and 
trailer component anomalies prior to catastrophic failure. 
The National Automotive Center, along with Radian, Inc., 
and our industry and academia partners will continue 
development of the Thermal Imaging Inspection Station 
to incorporate the latest technology and cost advantages in 
maturing this system for both military and commercial 
marketplaces. 
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gure 1 - Tire Dynamometer Test Cell 
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Broken Cords 
Bulge 

Figure 2. Thermal image of a tire with broken cords, 
not apparent externally. SD is 1.5 for the temperature 
range in this image. 

Figure 3. Thermal image of a tire with a bulge in the 
sidewall, visible only on close examination. SD is 1.3 foi 
the temperature range in this image. 

Figure 4. Typical thermal image of a good radial 
tire at operating temperature, the control tire. 

Figure 5. Thermal image of Test Tire 1 after 37 
minutes of testing at rated load and psi. 

FifJI re 6.  Thermal imaae of Test Tire 1 after tire failed. 138 FifJ Lire 7. Thermal imaae of Test Tire 2 after 
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Tire      Type 
DOT# 

TABLE 1 
Characteristics of Control and Test Tires 

Manufacturer    Size 

37x12.50R16.5LT 

14.00R20 

Control Radial Goodyear 
59F-4NEV087 

Tire 1    X-Radial Michelin 
WI-85325A* 
Load Range J 
Tubeless 

Tire 2   X-Radial Michelin 
WI-85203A* 
Load Range J 
Tubeless 

*Mfg Number - DOT # same for both tires - HC2w1tbx400 

14.00R20 

Max Load 
Single 

3,850lbs@50psi 

9,920lbs@100psi 

9,920lbs@100psi 
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TABLE 2 
Summary of Tire Test Variables 

Tire 
Road 

Speed 
(rpm) 

Load 
Weight 

(lbs) 

Inflation 
Pressure 

(psi) 

Duration 
(min) 

Thermal- 
Image Rate 

#/sec 

Control 35 2,000 50 116 1/60 

Tirel 35 9,920 100 87faiiure 1/60 

Tire 2 35 
45 
55 
55 

9,350 
9,350 
9,350 
9,900 

80 
80 
80 
80 

58 
29(*T=87) 
30(T=113) 

9(T=122)Wure 

1/60 
1/60 
1/60 
1/60 

*T = total time from start of test 

TABLE 3 
A Thirty Thermal-image Sample of Control Tire Data, Captured after 82 Minutes of 

Testing (11:01-11:30) 

Temperatur i°C 

Date, Time T* Min. Max. Mean SD 
10/22/98 11:01:01 82 34.51 41.78 37.63 0.54 
10/22/98 11:02:01 35.00 40.88 37.67 0.51 
10/22/98 11:03:01 34.55 41.42 37.61 0.57 
10/22/98 11:04:01 34.60 41.75 37.60 0.51 
10/22/98 11:05:01 34.48 41.64 37.67 0.55 
10/22/98 11:06:01 87 35.27 41.94 37.70 0.55 
10/22/98 11:07:01 34.52 41.96 37.63 0.54 
10/22/98 11:08:01 34.58 41.90 37.72 0.55 
10/22/98 11:09:01 35.16 41.31 37.63 0.57 
10/22/98 11:10:01 35.28 41.72 37.70 0.55 
10/22/98 11:11:01 92 34.62 41.84 37.74 0.55 
10/22/98 11:12:01 34.63 41.53 37.79 0.57 
10/22/98 11:13:01 35.19 41.66 37.77 0.58 
10/22/98 11:14:01 34.75 41.75 37.72 0.50 
10/22/98 11:15:01 34.56 41.71 37.73 0.59 
10/22/98 11:16:01 97 34.55 41.14 37.70 0.57 
10/22/9811:17:01 35.11 41.51 37.75 0.51 
10/22/98 11:18:01 34.79 41.51 37.73 0.59 
10/22/98 11:19:01 34.99 41.88 37.85 0.53 
10/22/98 11:20:01 35.33 42.09 37.79 0.55 
10/22/98 11:21:01 102 35.33 42.04 37.85 0.55 
10/22/98 11:22:01 34.93 41.96 37.83 0.60 
10/22/98 11:23:01 34.66 42.08 37.86 0.55 
10/22/98 11:24:01 35.05 40.94 37.89 0.58 
10/22/98 11:25:01 35.12 42.05 37.88 0.59 
10/22/98 11:26:01 107 34.68 42.25 37.85 0.55 
10/22/98 11:27:01 35.15 41.67 37.87 0.50 
10/22/98 11:28:01 34.74 41.91 37.93 0.54 
10/22/98 11:29:01 34.67 41.21 37.93 0.57 
10/22/98 11:30:01 111 35.41 42.13 37.98 0.55 

Mean S D 0.552 
*T = Time, in minutes, elapsed from start of 
test 

Test Duration: 09:39 to 11:40 



TABLE 4 
Thermal-image Data Accumulated During the Final 30 Minutes Before Tire 1 

Failed, and Data from Two Images after Failure. 

Temperature °C 

Date, Time T* 
12/16/98 10:13:37 18 
12/16/98 10:14:37 
12/16/98 10:15:37 
12/16/98 10:16:37 
12/16/98 10:17:37 
12/16/98 10:18:37 23 
12/16/98 10:19:37 
12/16/98 10:20:44 »* 
12/16/98 10:21:44 
12/16/98 10:22:44 
12/16/98 10:23:44 28 
12/16/98 10:24:44 
12/16/98 10:25:44 
12/16/98 10:26:44 
12/16/98 10:27:44 
12/16/98 10:28:44 33 
12/16/98 10:29:44 
12/16/98 10:30:44 
12/16/98 10:31:44 
12/16/98 10:32:44 
12/16/98 10:33:44 38 
12/16/98 10:34:44 
12/16/98 10:35:44 
12/16/98 10:36:44 
12/16/98 10:37:44 
12/16/98 10:38:44 43 
12/16/98 10:39:44 
12/16/98 10:40:44 
12/16/98 10:42:11 *** 
12/16/98 10:43:36 47 

Tire Fails 

Min. Max. Mean SD 
35.57 50.26 41.81 2.07 
35.90 46.74 42.24 2.28 
35.78 46.35 42.24 2.08 
35.87 47.42 42.58 2.18 
35.53 52.09 42.62 2.26 
35.32 53.79 43.01 2.42 
35.99 47.65 43.09 2.33 
36.08 48.93 43.35 2.33 
36.48 55.33 43.61 2.36 
36.31 49.05 44.18 2.48 
36.66 50.42 44.26 2.54 
36.82 57.43 44.28 2.53 
35.56 49.15 44.45 3.12 
36.69 49.17 44.54 2.66 
35.89 49.43 44.69 3.03 
36.24 58.30 44.97 3.01 
36.20 57.04 45.02 3.03 
36.11 50.60 45.14 3.17 
36.35 52.81 45.18 2.90 
36.32 58.38 45.26 3.22 
36.16 50.79 45.58 3.28 
36.71 50.65 45.67 3.16 
35.50 59.74 45.74 3.39 
35.58 60.33 45.92 3.41 
36.06 55.25 46.12 3.57 
36.36 56.16 46.25 3.20 
36.75 61.83 46.70 3.52 
37.28 51.80 46.76 3.30 
36.24 51.65 46.80 2.60 
36.39 55.37 47.57 3.35 

12/16/98 
12/16/98 

36.64 
36.20 

76.50 
77.76 

Mean 
SD 

48.55 
49.89 

2.826 

3.72 
3.68 

*T = Time, in minutes, elapsed from start of test 
**Data capture interrupted by T1IS operator to review 
first indication of possible tire failure data capture was reprogrammed 
from 1 frame/min. to 1 frame/5 sec. This caused the gap between 10:40:44 and 10:42:11 

Test Duration: 09:55 to 10:43 
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TABLES 
Thermal-image Data Accumulated During the Final 30 Minutes Before Tire 2 Failed, 

and Data from Two Images after Failure 

Temperature °C 

Date, Time T* Min. Max. Mean SD 
12/16/98 16:30:10 32 36.80 55.50 49.70 4.50 
12/16/98 16:31:00** 40.10 57.85 52.29 4.10 
12/16/98 16:32:00 39.27 57.94 51.74 4.53 
12/16/98 16:33:00 40.10 58.08 52.63 3.81 
12/16/98 16:34:00 40.72 57.71 52.56 3.93 
12/16/98 16:35:00 37 37.61 58.37 52.74 4.03 
12/16/98 16:36:29 40.37 58.46 53.02 3.88 
12/16/98 16:37:29 40.26 58.70 53.21 3.97 
12/16/98 16:38:29 40.12 58.36 52.56 4.31 
12/16/98 16:39:29 ** 40.30 58.35 52.79 4.17 
12/16/98 16:40:29 42 38.02 59.41 53.14 4.09 
12/16/98 16:41:34** 40.10 58.85 52.87 4.44 
12/16/98 16:42:04 ** 41.02 58.82 53.19 4.19 
12/16/98 16:43:04 40.23 59.35 53.29 4.34 
12/16/98 16:44:04 40.10 58.89 53.19 4.27 
12/16/98 16:45:04 47 40.66 58.98 53.09 4.47 
12/16/98 16:46:04 40.50 58.78 53.31 4.29 
12/16/98 16:47:04 40.73 59.17 53.38 4.30 
12/16/98 16:48:04 38.65 59.50 52.99 4.59 
12/16/98 16:49:04 40.91 59.94 53.64 4.65 
12/16/98 16:50:04 52 40.69 60.19 53.90 4.43 

**12/16/98 16:51:04 39.22 60.36 54.12 4.35 
12/16/98 16:52:04 38.88 60.06 53.68 4.71 
12/16/98 16:53:04 38.14 60.79 54.35 4.32 
12/16/98 16:54:04 40.44 60.18 54.17 4.48 
12/16/98 16:55:04 57 41.00 61.21 54.56 4.87 
12/16/98 16:56:44 39.69 60.73 54.14 5.09 
12/16/98 16:57:44 40.79 60.85 54.56 4.65 
12/16/98 16:58:44 39.67 61.73 54.51 5.23 
12/16/98 16:59:44 61 38.46 62.90 55.22 4.58 

Tire Fails Mean 4.38 

12/16/98 17:00:14 38.46 78.00 54.34 6.39 
12/16/98 17:00:44 43.66 79.30 59.55 5.65 

*T = Time, in minutes, elapsed from start of test 
**Data capture interrupted by TIIS operator to review data. Load 
increased from 9350 lbs to 9900 lbs at 16:51 

Test Duration: 14:58 to 17:00 
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ABSTRACT 

Bekker's Derived Terramechanics Model (BDTM) is an 
analytical tool for evaluating vehicle off-road mobility. 
BDTM has been developed using Bekker's equations for 
vehicle soil interactions. He developed the bevameter 
technique to measure mechanical strength characteristics 
for many soil and snow conditions. This procedure uses 
seven parameters to describe soil conditions, which 
differs from the conventional single parameter vehicle 
cone index methodology used by the NATO Reference 
Mobility Model (NRMM). NRMM uses the cone 
penetrometer technique to experimentally measure fine- 
grained soil mechanical characteristics. 

BDTM is in a spreadsheet format, and its primary purpose 
is to compare mobility characteristics for robotic track 
and wheeled vehicles under different terrain conditions. 
Bekker's model is a simple, linear one degree-of- freedom 
(1-DOF) model, which assumes that in a perfectly 
cohesive soil (i.e. clay), soil thrust is only a function of 
contact surface area. The model also assumes that for a 
perfectly cohesionless or frictional soil (i.e. dry sand), soil 
thrust is a function of vehicular weight[l]. This paper 
attempts to compare the mobility characteristics of 
wheeled vs. track vehicles for different size, weight and 
terrain conditions. 

INTRODUCTION 

BDTM was developed as a design tool to compare 
different types of robotic vehicle mobility performance 
characteristics. No single vehicular locomotion system 
has optimal mobility performance under all terrain 
conditions. Vehicle running gear design always involves 
design compromises or tradeoffs over a number of 
mobility factors. Most future Army robotic vehicle 
platform concepts fall into two broad categories: wheeled 
and track systems. 

Wheeled vehicles are typically more agile and 
maneuverable than tracked vehicles, but possess higher 
ground pressures and are therefore less trafficable. 
Tracked vehicles on the other hand have a lower ground 
pressure, superior traction and are thus more trafficable. 
However, they are not as agile or mechanically efficient 
as their wheeled counterparts due to (typically) larger 
mass and much larger internal motion resistance. 

Both wheeled and tracked vehicles have been successful 
in negotiating roadways and moderately unstructured off- 
road terrain. Vehicles with a larger wheelbase, ground 
clearance and horsepower per weight ratios generally 
have much better intrinsic mobility performance than 
smaller systems. A comparison of vehicle types for equal 
size and weights indicates that wheeled systems are 
typically superior to track systems in agility, 
maneuverability, ride quality and terrain damage. 
Tracked vehicles have distinct advantages relative to 
stability, ground pressure, maximum vertical slope, and 
drawbar pull. 

Selection of running gear usually becomes a choice 
between which mobility characteristics are most 
important for a vehicle's intended mission profile. Ride 
quality is not as important to unmanned or robotic 
vehicles unless equipment such as sensors exceed 
vibration limits or structural loading specifications are 
exceeded for rough terrain conditions. The vehicle need 
only have sufficient drawbar pull to transport itself and its 
payload. Low ground pressure is principally an 
advantage only in soft soil terrain conditions. Unmanned 
systems generally weigh less and have a lower ground 
pressure than the larger manned combat vehicles such as 
the main battle tanks or infantry fighting vehicles. 

Agility and maneuverability are both advantageous for 
off-road conditions. Ground clearance, maximum slide 
slope angle and wheelbase are important for difficult 
obstacle negotiation challenges such as ditch crossings or 
wide vertical steps.    In general a complete systems 
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analysis is necessary to determine the optimal set of 
mobility characteristics for a particular mission profile. 
Unmanned vehicles in particular need a new set of system 
requirements and represent a separate set of design 
challenges from their traditionally manned counterparts. 

BDTM is thus a modest attempt to examine tradeoffs 
between different mobility characteristics for wheeled and 
track vehicles. It is a first-order linear model, which 
ignores the nonlinear dynamic interactions between the 
vehicle and its terrain. It does, however, analyze three 
primary parameters essential to generic mobility: vehicle 
size, weight and ground pressure. Future systems will 
vary significantly in these parameters. Since they will 
also navigate over terrain with large variations in 
mechanical properties, BDTM provides a useful tool for 
determining their first-order design characteristics. 

THE BEKKER MODEL 

The mechanical behavior of soils varies considerably 
under a wide variety of environmental conditions. For 
example composition, moisture levels, porosity, 
temperature, etc., affect bulk soil mechanical behavior 
relative to vehicle/terrain dynamics. It is also well known 
that for the same amount mechanical loading, a tracked 
vehicle may cross soft terrain without considerable 
slippage, whereas wheels may slip considerably, or 
simply spin. The amount of slip varies with soil type. 

The Bekker model uses the relationship between certain 
physical soil characteristics and shearing strength to 
predict vehicle cross-country mobility. Bekker considers 
wheels and tracks as simple loading surfaces having 
similar forms, but different lengths and widths. He 
extrapolates the analogy between soil shear produced by 
laboratory crawlers to track vehicles as shown in Fig. la 
[1]. When the blocked track is moved relative to the soil 
mass in the laboratory shear box, the maximum shearing 
force is not developed instantaneously with the initiation 
of relative motion. Instead the soil must be compacted to 
some degree before reaching the final steady state 
mechanical shearing stress. Thus the track grousers begin 
slipping before reaching the point of maximum vehicle 
traction. This transient condition is the basis for Bekker's 
simple 1-DOF model for vehicle trafficability. 

Shear Area 
Figure 1   Soil Shear Analogy 

The shear stress is the ratio between the vehicle traction 
force, which is parallel to the soil surface, and the area of 
the track normal to the surface. This tractive force is 
opposed by the soil resistance as the grousers slip during 
the shearing process. The normal loading force of the 
vehicle compacts the soil, which affects the resistance it 
exudes against the grousers as the track rotates on the 
vehicle. In effect the track forces, which push against the 
soil, generate a soil resistance that is determined by soil 
type and compaction. Vehicle weight generates ground 
pressure, which further compacts the soil and alters the 
soil resistance. 

Figure 2b shows a tracked vehicle in motion. A grouser 
on the track first comes into contact with the ground at 
position 1. At the moment of first contact no shearing has 
occurred. As the vehicle moves forward, a shearing force 
is developed in the lateral direction. The positioning of 
the grouser begins to slip back pushing the soil and 
causing a soil distortion (S). As the vehicle continues to 
move, the amount of soil distortion increasesfl]. 
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A. Cohesionless Soil 
B. Cohesive Soil 
C. Mixture of A and B 

Figure 2   Characteristics of soil deformation 

Empirically generated curves in Figure 2a show the 
motion of soil under shear plotted for three different types 
of soils[l]. These curves are obtained through empirical 
data. The curve labeled A is for a loose frictional or 
plastic soil such as wet clay. The shearing strength xa of 
such a soil is reached after the initial period of 
compaction, which takes place over a distance Sa. After 
this point the stress remains practically the same 
irrespective of any slip. Soil B consists of a dry coherent 
mass: dry clay or snow at very low temperatures. This 
type of soil quickly reaches its maximum shearing 
strength and then shears off rapidly. The last curve C is a 
soil type that has intermediate properties. Upon reaching a 
maximum value at a certain slip distance from the origin, 
it starts to lose its shearing strength but not as rapidly as 
curve B[2]. 

For modeling purposes, it is critical to come up with a 
general equation for these curves. The curves in Figure 2a 
are identical to the displacement (x) and natural time 
frequency (tot) of an aperiodic vibration: 

x = A e
('b^(b'"1))<B + A e^-^1^^ (1) 

where b is the coefficient of damping. To write a formula 
in terms of soil stress (T) and soil deformation (S),we 
place T = x, K]S = cot, and K2 = b where K\ and K2 are 
coefficients of slippage to get the following result. 

= A gt-^+VCl-WS + £ g(-Kj-V(K2-l))K,S (2) 

To determine the coefficients A, and A^ , for slip S = 0 

and T = 0: 

Ai+A2=0 

Also for slip S = 0, T = 0, and dt/dS = K3j 

= K3 

(3) 

Aj and ^2» 

4- ^3 

A2=- 

2K^(K2-\) 

2K,4(K\ -1) 

Substituting^; and ^2 into equation (2): 

(4) 

(5) 

r = *3 

2Kiyl(K2
2-\) 

(c 
K^yJKi-\)K,S _e(-X2-VJC2

2-l)/C,Ss   (g) 

The maximum peak of the curve in Figure 2a can be 
calculated and is proposed by the authors in equation (7). 

s„ = 
\n(-K2 -J(K2

2-\))-\n(-K2+yl(K2
2-\) 

2Kiyl(K2
2-\) 

(7) 

The shear strength of soil (t) can be defined as the 
maximum, or limiting, value of shear stress that may be 
induced within its mass before the soil yields[3]. A Mohr 
diagram plotting ground pressure vs. shear stress, figure 
3, shows the state of the stress for any orientation of a 
reference axis. The Mohr circle can only expand to a 
critical point before failure occurs. The line tangential to 
where failure occurs is the Mohr-Coulomb failure line. 
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The equation of this line is y = mx + b where b is the 
coefficient of cohesion, m is tan (((»), <|> is the frictional 
angle, and x is normal stress or ground pressure. This line 
is the fundamental approximation to the maximum 
shearing strength, z^ of a particular type of soil and has 
been adopted as the definition of strength in land 
locomotion. 

Tm =c + ptan(0)      (8) 

0 

Figure 3   Mohr-Coulomb Failure Line 

Since  the  portion  contained  in  brackets  (Eq.  6)  is 
dimensionless, the value of K3/ 2K]V(K2 -1) must have 

the units of Ib/'mr and the value of K3 may be expressed 
in the following manner. 

2K^(K2
2-l)(c + ptan<?>) 

Now equation (6) can be simplified: 

-'max 

(10) 

where ymax is the largest value within the brackets. The 
slip distortion and the amount of slip are related. The 
distance of shear (Sm) is equal to the speed of the slip 
times the time in which it occurs. 

sm = v (11) 

However, the speed of slip is equal to the speed of the tire 
or track minus the actual speed: 

VS=V,-Vo (12) 

Sm=(v,-va)t    (13) 

and t = dlvt, where d is the distance where S,„ has 
occurred. 

Sm=d(l-^) = i0d    (14) 
v, 

The amount of soil distortion that takes place at any point 
at a distance x from the front of the ground contact area is 
equal to 

S = Sm(x/d)      (15) 

So, S = i0x (16) 

Equation (16) then allows for a relationship between 
tractive force and slip. Figure 4 shows the shear force of a 
tracked vehicle in two types of soil. The top graph is of 
highly frictional undisturbed firm silt. At ten- percent slip, 
shear is produced along the entire track; but it is clear that 
the front half of the track is producing the most of the 
force[2]. As the vehicle begins to experience more slip, 
most all of the shearing force is produced at the front of 
the tracked vehicle. In feet, the back half of the track 
begins to produce no shear and actually increases the 
resistance by creating drag. 

The second type of soil has a high cohesive property such 
as wet clay. At all values of slip, the entire length of the 
track is producing shear in relatively equal amounts along 
the length of the track. 

While in motion, a track or wheel develops a force 
produced by the shearing strength of soil. This force H is 
called the gross tractive effort or soil thrust. The tractive 
effort is the integral of the shear produced by a tire or 
track. By substitution of equation (10), 
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H = jrxdx     (17) 

H •f 
(c + /> tan f)    (-y^V^lT)^ 

-'max (18) 

_ gl-Ki-jKFlWifa 

3 10 13 10 %i 

DiiUnce from fiie front of contact UN (in) 

Undisturbed Firm Silt 

i 10 11 30 it 

D ulUKi from tht front ofconUct *m (ml 

Undisturbed Settled Sandy Loam 

Figure 4 Tractive force in different soil types 

Figure 4 shows the soil distortion at any distance x from 
the front of the ground contact area. The top graph shows 
tractive effort produced in undisturbed firm silt. The 
maximum tractive effort is quickly produced a short 
distance from the front of the vehicle and the rest of the 
track produces very little even at a very low percentage of 
slippage. The bottom graph shows the same track moving 
in an undisturbed settled sandy loam. 

It is often thought of the heavier a vehicle is the greater its 
tractive effort. Much experience gives credibility to this 

statement but is it valid for all soil types? In order to 
answer mis question, consider equation (19). Soil thrust is 
defined as the addition of two different soil strengths. One 
is from frictional properties and the second is from its 
cohesive properties. 

H = A-c + W -tan^ (19) 

If a soil type such as dry sand is chosen, a homogenous 
sample would contain no cohesive properties, Therefore 
c=0, and equation (19) is reduced to Wtan<j). There is no 
question as the weight is increased the amount of soil 
thrust increases proportionally. 

If the same vehicle is operated in a plastic soil such as 
saturated wet clay, the frictional component of the soil is 
equal to zero (<|*=0). Equation (19) is reduced to A c where 
A represents the contact surface area of the vehicle. A 
higher value of thrust is only obtained by an increase in 
contact surface area. 

To answer the question in a more direct approach, 
vehicles that traverse in highly frictional soils benefit 
from an increase in payload. However, in soil types with 
high moisture contents or very cohesive, vehicles benefit 
by an increase in contact surface area. An increase in 
weight in this type of soil would be a liability[5]. 

BDTM 

BDTM was established to give a first pass general 
evaluation of robotic vehicle mobility performance. It is a 
simple, linear one-degree of freedom (1-DOF) model mat 
has been created in a spreadsheet format. The model 
assumes that the soil is homogenous and the loading 
effects on the soil are linear. A tracked vehicle and a 
wheeled vehicle can be simulated at one time. These 
vehicles are evaluated on their tractive force, tractive 
effort, soil sinkage, drawbar pull, and tractive coefficients 
(DP/W). 

Inputs 

The inputs into the program are divided into three 
categories. The first set of inputs are general vehicle 
information. These include the width and length of one 
track or wheel in contact with the ground A 
corresponding code number relates to the actual shape of 
the print that the vehicle leaves on the ground. Other 
items include the number of tracks or wheels, contact 
area, and vehicular weight. 

The second set of inputs describes the vehicle 
trafficability, or conversely, the vehicle performance in a 
given terrain. These define the strength, sinkage, and 
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slippage that a vehicle would experience in a specific 
homogenous soil type. Most of these parameters are 
obtained from the Bevameter, which is a device created 
by Bekker for this purpose[l]. These include the depth of 
the plate sinkage, the modulus of soil deformation in 
cohesional and frictional soil, the exponent of soil 
deformation, and the coefficients of slippage. A separate 
section in the program provide these for different types of 
soil. Other parameters such as the coefficient of cohesion 
and the angle of friction are calculated off the Mohr- 
Coulomb failure line. 

The third set of inputs is used for the calculations of WES 
mobility indexes. The purpose of such inputs is to relate 
the Bevameter values to the WES cone index. This then 
allows for the comparison of results obtained through the 
NRMM mobility model. WES mobility indexes are 
defined by equation 20 and 21 [4]. The mobility index for 
a tracked vehicle is calculated by: 

stress-strain curves of soil, Bekker noticed that they are 
identical to the displacement (x) and natural time 
frequency (cat) of an aperiodic vibration[2]. The equation 
for tractive force was derived from this remark and is 
shown in equation (10). Its soil properties and the amount 
of slip distortion evaluate the tractive force. This is a 
product of the distance from the front of the track 
multiplied by the percentage of slippage the vehicle is 
experiencing. Equation (18) expresses the tractive effort 
in terms of soil properties, contact area, load, and slip for 
a given type of soil defined by its Kj and K2 constants. 

To evaluate sinkage in frictional and cohesive soil, 
Bekker derived a formula from his Bevameter 

Z = 
kc/b + kf 

I/B 

(22) 

MI = 

contact 
pressure x 
factor 

weight 
factor 

track     > 
factor 

x engine 
factor 

grouser 
factor 

+   bogie - clearance 
factor      factor 

transmission 
factor 

(20) 

and the mobility index for a wheeled vehicle: 

MI = 

contact 
pressure x 
factor 

weight 
factor 

Tire 
l— factor 

x engine 
factor 

grouser 
factor 

wheel 
load     - clearance 
factor     factor 

x transmission 
factor 

(21) 

Outputs 

The outputs are arranged into seven different categories. 
The first set is the theoretical soil thrust that the soil 
should support. This comes from the Mohr-Coulomb 
failure equation multiplied by contact area. It is 
expressed in equation (19) where W- tan^ is for the 

frictional composition of the soil and A • c is due from 
cohesion. Since most soil is a mixture of these two 
compositions, soil thrust in average soil is from the 
addition of these two terms. 

The next output set is for strengths and pressures. The 
normal force exerted on the soil is due to loading from the 
vehicle and is referred to as the ground pressure. The 
maximum soil strength is Mohr-Coulomb failure equation 
calculated at the corresponding ground pressure. From the 

where p is the ground pressure, b is the width of the track 
or tire, kc and kx are frictional and cohesive modulus of 

soil deformation, and n is the exponent of soil 
deformation. This equation answers why wider tracks or 
tires on vehicles with the same ground pressure sink 
deeper. 

Not all soil thrust can be accounted for the production of 
useful work. Some of the soil thrust is lost in the form of 
energy. The energy loss that compose the external 
resistances are caused by compaction of soil, bulldozing, 
and dragging. It has been shown that the portion wasted 
for overcoming compaction resistance may be expressed 
by 

/ 

*c = 

A 
n+l 

(n + Wc+bk4)ll 
W 

(23) 

where W'\% weight in pounds and / is the length of the tire 
or track in contact with the ground. It can be noted that 
from equation (23), the longer the contact area the smaller 
the compaction resistance. Bulldozing is the visible 
pushing of soil mass in front of a vehicle. For this model 
the resistances that are due from bulldozing are neglected. 
Also the resistances that occur from trapping the soil and 
dragging it are neglected. 

The drawbar pull (DP) is the total thrust minus the total 
resistances. It is customary to view the difference as the 
vehicle's ability to move. If the total is zero or negative, 
then the locomotion of the vehicle will stop. In BDTM, 
there are three different values of DP. The first is 
considering  soil thrust developed  purely  off of soil 
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parameters. The second DP value is including the 
additional thrust that is created by the action of grousers 
or treads. The Mohr-Coulomb line equation is then 
modified for this result: 

H = blc(\ + 2h I b) + W tan </>{[ + 0.64[(fc / b) cot_1 (h I fe)J 

(24) 

where b is the width, / is the length, h is the height of the 
grouser or tire tread, c is the coefficient of cohesion, and <t> 
is the angle of friction. The last value of DP that is in 
BDTM is the value of the total tractive force evaluated at 
a certain slippage at a specific distance from the front of 
the contact area. A common comparison used to evaluate 
vehicles is to normalize these DP by there weight. This is 
often called the traction coefficient and should not be 
used as a stand-alone measure in evaluating vehicles. 

The final set of outputs is devoted to cone index (CI) and 
mobility index (MI) conversions. Waterways Experiment 
Station (WES) came up with a way to measure soil 
parameters. The cone index is the parameter that is 
obtained by using their cone pentrometer device. The Cl 
values are obtained by converting Bevameter values into 
CI values from equation (25)[6]. The conversion was 
proposed by Janosi and tested by WES in 1964. It was 
shown to be consistent within the limits of accuracy. 

CI = 1.625 
(« + l) 

((z+i.5r-z"+i) 

+ 0.517it 
(z + 1.5)" ."+2 (z + 1.5)z n+l \ 

V \{n + l)(n + 2)    rt + 2 n + \ 

(25) 

Charts 

In BDTM, there are four charts that provide useful 
information. The first chart is traction coefficients versus 
k values. This provides curves for both the tracked and 
wheeled vehicle for the traction coefficient in different 
strengths of soil. Figure 5 shows a tracked vehicle and the 
same vehicle with tires in a mostly frictional soil type. It 
can be seen that the tracked vehicle can easily traverse 
soil with less consistency than the same vehicle with tires 
on. 

K (Xc+b*Kphi) 

Figure 5 DP/W vs. K values 

The next two charts show the tractive force produced 
under the contact area of the track or tire. 

These curves are made at 10, 20, 30, 40, and 100 percent 
slip. Figure 6 shows a tracked vehicle in an undisturbed 
settled sandy loam. It is shown that the track produces 
force constantly down the contact area of the track. Even 
at various levels of slip. 

10 IS 30 1$ 

DlftttCi lro» OH froM of (oiucl ml (n 

Figure 6 Tractive Force vs. Distance Under Track 

The last chart displays tractive effort per unit area with 
soil distortion. The amount of work that is accomplished 
as the amount of soil distortion occurs. This is evaluated 
as the slippage increases. Figure 7 shows tractive effort 
versus slip at three different soil types. Soil type A is a 
highly frictional soil type and can be seen that almost all 
the tractive effort is produced when the vehicle 
experiences less than ten percent slippage. On the other- 
hand, soil type C is a plastic or cohesive soil type. 
Tractive effort is produced relatively uniform regardless 
of the soil distortion or slippage experienced. 
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A. Cohesionless or loose frictional soil 
B. Mixture of A and C 
C. Cohesive or plastic soil 

Figure 7  Tractive Effort vs. Slip 

EXAMPLES 

Two examples have been provided to demonstrate the 
ability of the model. 

Example I 

The track vs. tire case has been argued quite extensively. 
It has been slated by some that a low-pressure pneumatic 
tire can perform as well as a track. What does the BDTM 
predict for small robotic platforms? 

To address this question, lets look at an example of a 
robotic vehicle traversing in a highly cohesive soil type 
such as wet clay. A small four-wheeled robotic platform 
with 12" diameter tires as shown in figure 8a leaves a 
rectangular print 3"x4". The weight of the platform is 
1000 lb. and the tires are located a distance of 36" apart. 
Each tire has a total contact area of 12" and an overall 
surface contact area of 48". The ground pressure of the 
vehicle is 21 psi. 

The model shows the vehicle sinks to a level of 2.3". At 
this depth, the resistance to motion created by compacting 
and bulldozing is greater than the maximum soil thrust 
generated. The Drawbar-Pull is a negative value 
indicating that the vehicle is incapable of moving. 

It is often though that an increase in payload could help 
in this situation. When a 200-lb payload is added to the 
robotic vehicle, the vehicle begins to sink deeper. The 
resistance to motion increases. Drawbar-Pull remains a 
negative number and the vehicle still is incapable of 
moving. 

When the diameter of the tire is increased to allow for a 
3"x6" print as shown in figure 8b, the total surface area is 
increased to 72" squared and the vehicle only sinks to a 
level of 1.5". The amount of resistance to motion has 
decreased to a level that the vehicle is capable of moving. 
This is indicated by a positive Drawbar-Pull; however, the 
amount of DP that is produced is minimal. 

It is seen that an increase in tire diameter, which is an 
increase in surface contact area, leads to an increase in 
DP. The next logical step would then be to continually 
increase the diameter of the tire until the desired amount 
of DP is obtained. This approach leads to other problems 
such as turning radius and for our purpose is not practical. 

A possible solution to this is to add another set of wheels. 
Figure 8d displays the robotic vehicle with six wheels. 
When the 12" diameter wheels are used leaving a 3"x4" 
print, the amount of surface contact area is equivalent to 
the four-wheeled vehicle with enlarged tires. Therefore, 
the same results may be obtained by using six smaller 
wheels than with four enlarged. By increasing each of the 
six tires to allow for a 3"x6" print for each, the total 
surface area is increased to 108" squared. The vehicle's 
ground pressure has decreased to 9.1 psi and sinks 1" in 
the ground. The amount of Drawbar-Pull doubled. 

(c) w     w 

Figure 8 Robotic Vehicles 

When the vehicle is outfitted with a track that is 25" long 
and 3" wide as shown in Figure 8c. The ground pressure 
has decreased to a level of 6 psi and sinks .6" in the soil. 
The drawbar pull is 14 times greater than the 4-wheeled 
vehicle, 4 times greater than the vehicle with enlarged 
tires, 4 times greater than the six-wheeled vehicle with 
12" diameter wheels, and 2 times greater than the six- 
wheeled vehicle with enlarged wheels. When an 
additional 200-lb payload is placed on the tracked vehicle, 
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tiie tractive effort remains unchanged, and the DP actually 
decreases due to sinkage. 

This example shows that in a plastic soil type such as wet 
clay. The vehicles ability to traverse is dependent on the 
amount of contact surface area. 

Example 2 

For this example, we will look at the question in example 
1 about track vs. tire but in a highly frictional type of soil 
such as dry sand. The same robotic vehicle platforms as 
shown in Figure 8 has been selected. 

When the vehicle operates with tires that leave a 3"x4" 
rectangular print, the tractive force and soil thrust 
produced are very comparable to the vehicle outfitted 
with a 3"x25" track. The track outperforms the tire only 
1.5 to 1. If the 4-wheeled vehicle is outfitted with the 
oversized tires leaving a 3"x6" surface contact print. The 
ratio is decreased to 1.2 to 1. The six-wheeled vehicle 
with the 3"6" print tires are almost 1 to 1. 

It is quite interesting to note that when the vehicles are 
experiencing more slip. The 4-wheeled vehicles actually 
start to outperform the tracked vehicle. This begins to 
occur at around 33% slip for the 3"x4" print and 24% for 
the oversized tire. 

Another thing that is fascinating is when the payload is 
increased for the tracked vehicle; the tractive force, soils 
thrust and drawbar increased respectively. When the 4- 
wheeled vehicle payload increased, the tractive force and 
soil thrust increased; but the drawbar pull decreased. By 
decreasing the weight of the 4-wheeled vehicles by 200- 
lb, the track only outperformed by 1.3 to 1 for the 3"x4" 
print and 1.1 to 1 for the oversized tire. 

It can clearly be seen by this example that a lower 
weighted-wheeled vehicle can perform as well if not 
better than a tracked vehicle in highly frictional soil types 
such as dry sand. 

SUMMARY 

The BDTM model is our first attempt at developing a 
spread sheet formulation of Bekker's early 
Terramechanics model for off-road vehicles. The 
fundamental assumptions in Bekker's work are that 
shear/slip   is  the  primary  mechanism   for   generating 

tractive vehicle forces, a 1-DOF over-damped, linear 
model describes vehicle motion, and that soils plastically 
deform under ground pressure forces. A total of seven 
parameters constrain the model to a unique set of 
vehicle/terrain characteristics. The BDTM assumes a 
generic soil condition, which is a combination of 
frictional (sandy) and cohesive (clay) type soils. 

A primary objective of this paper is to evaluate Bekker's 
formalism as a tool to perform mobility tradeoffs between 
wheeled and track vehicles. BDTM is able to accurately 
predict the percent slip and drawbar-pull characteristics of 
track vehicles for several different soil conditions. In 
addition the model predicts soil distortion at any x from 
the front of the ground contact area, maximum tractive 
effort, and soil sinkage for various soil conditions. Several 
examples compared the relative mobility advantages of 
wheel and track vehicles for different types of soil 
conditions. In some cases 4-wheeled vehicles begin to 
outperform track vehicles for high slip conditions. 

Future analysis will compare six and eight wheel vehicles 
with track vehicles. The former should have considerably 
better mobility performance than their 4-wheel 
counterparts. The wheel vs. track comparisons will be 
made for different weight classes as well ranging from 
less than 100 pounds to the Ml tank. In addition the link 
between BDTM and NRMM will be further developed by 
relating the mobility and vehicle cone indicies to Bekker's 
model. 
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ABSTRACT 

Ground vehicles are emitters of seismic, acoustic, and 
magnetic (SAM) signatures of military interest. These 
sensors are low cost and passive devices and are used for 
the gathering of signatures from ground vehicles. 
Vehicular scenarios can include from the benign to 
warhead detonations in the vicinity of the target. The 
signatures are of a robust nature and lend themselves to 
be exploited for seismic, acoustic, and magnetic models. 
The paper begins by defining the procedures and 
standards for the collection of quality signatures. 
Identification and discussion of SAM vehicular sources 
and battle damage assessment (BDA) technique follows 
this. Acoustic propagation models and signature data 
basing discussions related to the SAM data are essential 
components. Finally a composite of seismic, acoustic, and 
magnetic signatures provide a realistic picture of what can 
be accomplished. 

INTRODUCTION 

The use of laboratory grade seismic, acoustic, and 
magnetic devices for the gathering of quality signatures is 
essential. These sensors which operate in the passive 
mode, have been used for military purposes since the 
Vietnam War. Such sensors are small, low priced, and can 
consume low power levels during operation. Additionally, 
these sensors are very adaptable to harsh environments. 

Vehicles of military interest are emitters of seismic, 
acoustic and magnetic (SAM) signatures. The signatures 
when properly collected and correlated can provide a 
fairly accurate description of the source. Things such as 
types of engines, number of engine cylinders, type of 
exhaust, track or wheel noise, sound intensity, track 
frequency, turbine engines, turbo charged engines, on- 
board and induced magnetic fields, are some of the 
vehicular sources that are sensed by SAM devices. These 

signatures are frequently used for the exploitation, 
detection, and classification of military vehicle systems. 

The immediate vehicular background environment 
activity also provides a wealth of information that 
contributes to the overall signature. These are the 
weather, battlefield activity, explosions, radio 
communications, radar emissions, and other man made 
and natural activities. 

Data basing of the seismic, acoustic, and magnetic 
signatures plays an important role in the SAM model 
development. It is important to insure that the data 
collection cycle, calibration to Range Commanders 
Council (RCC) Standards, and documentation are part of 
a quality model. 

STANDARDS, SENSOR 
DEPLOYMENT, and DATA 
COLLECTION 

Data Collection Discipline 

Seismic, acoustic, and magnetic data collection standards 
are the key to quality (SAM) signatures. Standards are 
necessary within the Department of Defense (DOD) to 
control the constraints of variable site conditions on SAM 
sensor emplacement, deployment, and performance. 
These standards are used to establish compatibility 
between the sites at DOD centers. Regardless of where 
the test is conducted, the same SAM standards are 
employed. 

The RCC Standards provide the discipline for the 
collection of signatures. Included in the standard is the 
documentation of sensor parameters with definitions, 
instrumentation   procedure,   ground   truth   guidelines, 
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calibration     technique,      and     the     meteorological 
requirements, and other documentation required. 

Acoustic Sensor Characteristics and Architecture 

Acoustic sensors are used to convert pressure variations 
in the atmosphere to electrical signals. The simplest 
microphone deployment is a single unit. Other arrays 
include circles, triangles, linear designs, and underground. 
Figure 1. Shows a triangular array of ground placed 
microphones. 

Figure 1. Shows a Ground Placed Triangular Acoustic 
Array 

Acoustic arrays typically used to provide bearing 
estimates to a sound source and for removing the effect of 
a nuisance sound source. Placement of acoustic sensors is 
very important. In some instances, the sensor must be 
isolated from the ground surface to avoid the introduction 
of seismic vibrations. One technique for isolating the 
microphone from the ground is to employ a small-inflated 
inner tube between them. Figure 2. Shows this type of 
placement. 

Another form of acoustic linear array is the suspended 
acoustic array. The single-sided array consists of nine 
microphones spaced at 10-degree intervals. This type of 
array provides a top-down perspective to an acoustic 
source. Another type of suspended acoustic array is the 
double-sided array. This device consists of eighteen 
microphones spaced at 10-degree intervals. Both arrays 
are used to gather acoustic data samples to simulate air to 
ground type munitions that have acoustic sensors. The 
suspended acoustic arrays are also used to collect data 
samples to simulate an AUV acoustic sensing gathering 
activity. Figure 3. Shows the single sided acoustic array. 

Acoustic data samples from the suspended acoustic array 
will be discussed later in this paper. 

Figure 3. Single Sided Suspended Acoustic Array 

Figure 2. Single Microphone with Isolating Inner Tube 

Seismic Sensor Characteristics and Deployment 

The geophone is a relatively simple device that employs a 
magnetic mass in a coil to produce a signal. A geophone 
that is implanted into the ground vibrates with the ground, 
and the coil moves with the supporting case while the 
magnetic mass remains stationary. The motion between 
the mass and the coil generates an electrical signal, 
making the geophone a self-generating device. There are 
two basic types of geophones, those that measure motion 
on a single axis or on three axes. 

The simplest form of a seismic sensor is the single axis 
geophone. This device measures vertical motion and is 
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most frequently used for collecting seismic signatures. 
The 3-axis geophone provides a broader set of seismic 
signatures. Seismic data from the 3-axis geophone 
provides information that enables the user to analyze the 
propagation of seismic waves (how the different types of 
seismic waves compose the measured signal). A 3-axis 
seismic sensor is recommended when collecting seismic 
signatures. 

Geophones may be planted on the surface of the ground 
or buried at some depth, depending on the application. 
Regardless of the type of geophone or the emplacement, 
there is a need to insure that the geophone is in good 
contact with the soil. It is recommended that the RCC 
Seismic Standards be employed when planting 
geophones. Figure 4. Shows a 3-axis geophone collocated 
with an acoustic and magnetic sensor. 
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Figure 4. Seismic Sensor Collocated with Acoustic and 
Magnetic Devices 

Magnetic Sensor Characteristics and Placement 

The magnetic sensor consists of a 3-axis flux-gate 
magnetometer. This device is used to make precision 
measurements of magnetic fields with a sensitivity level 
of plus or minus one (1.0) Gauss. The magnetometer 
measures the magnetic field sensed by each of the 
orthogonal axes. Its signal output is linear with applied 
field over the range of plus or minuslOOO mGauss. 

Ground vehicles are composed of ferromagnetic materials 
and when moving in a uniform magnetic field, they 
produce magnetic field variations, which can be detected 
by a magnetometer. The magnetic field variations are 
produced by a magnetic dipole moment and are functions 
of the distance between the magnetic sensor and the target 
moment. 

The calibration of the magnetometer is conducted at a 
facility where documentation is traceable to National 
Institute of Standards and technology, NIST. 

Placement of the magnetometer sensor in the field is 
accomplished by isolating the sensor from the ground 
surface. This is accomplished by using a piece of 
concrete, like a stepping stone, for isolation purposes. 
Figure 4. Shows a magnetometer sensor in the field. 

Other applications require that the magnetometer be 
mounted in an elevated position. This type of setting is 
used for those tests that require overhead vehicular 
measurements. Another area of magnetic interest, is the 
measurement of the on-board moment. These are the 
signatures that emanate from vehicles that have for their 
source active electrical systems. 

VEHICULAR SAM SIGNATURE SOURCES 

Sound sources including all types of machinery and 
human activity has its own peculiar characteristics. Quite 
enough the sound is distinctive to allow identification and 
tracking of the source. Away from the source, the sound 
generated is modified by atmospheric propagation which 
depends on a variety of meteorological and surface terrain 
conditions. A careful characterization of a source or a 
receiving system must account for the propagation 
conditions present as well as characteristics of the 
measurement and recording system. 

When planning acoustic measurements in the atmosphere, 
many variables must be controlled or documented. At a 
minimum these include the characteristics of the sound 
source, a description of the receivers and recording 
system, characterization of meteorological conditions, 
and the ground along the propagation path, a description 
of the terrain, and notes on background or nuisance sound 
sources. 

Despite modem engineering designs to limit seismic, 
acoustic, and magnetic emanations produced by military 
vehicles, SAM sensors and new technology can still 
detect and classify these vehicles. 

Atmospheric Acoustic Signatures 

The primary source of acoustic noise in a military vehicle 
is that produced by the engine and it is delivered through 
the exhaust. Other sources include, auxiliary power units, 
fans, transmissions, differentials, pony engines, tires, and 
tracks to mention a few. 

Earlier it was mentioned that the vehicle engine exhaust 
system was the primary noise source. Figure 5. Shows 
spectrogram from a 12-cylinder diesel engine. Closer 
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inspection of the spectrogram indicates that numerous 
engine harmonics populate a certain spectral region. Two 
harmonics dominate the spectral region of interest. These 
are the 6th and the 12th harmonics. This is a typical feature 
exhibited by V-12 engines that have a dual exhaust 
system. Additionally, the presence of tire noise is evident 
as the vehicle moves. Gear changes that took place before 
the vehicle attained a specific speed are shown. 
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Figure 5. Acoustic Spectrogram of Military Wheeled 
Vehicle in Motion 

Seismic Signatures 

Seismic signatures are those generated by means of direct 
ground contact by an area of the vehicle. A good source 
of seismic energy is the track on armored vehicles. This 
seismic source produces a track frequency as a result of 
vehicle travel. Wheels from military vehicles are another 
source of seismic energy. 

The seismic spectrogram shown in Figure 6 shows a 
wealth of information about the military wheeled vehicle 
as it undergoes a dynamic routine. Suspension vibrations, 
tire noise, and an indication of acoustic coupling make up 
the seismic spectrogram. The acoustic coupling can be 
traced back to the engine acoustic exhaust harmonics. 
Yes, geophones can pick-up acoustic engine harmonics. 
When collecting seismic signatures it is necessary to 
collocate a microphone with the geophone. This is 
necessary to compare and determine the origin of the 
signatures. The Seismic RCC Standard describes this 
technique in detail. 

Sutpanaton Vlbritiona 

higure 6. Seismic Spectrogram ol the Military 
Wheeled Vehicle in Motion Depicted in Figure 5 

Magnetic Signatures 

Magnetic sources are divided into the induced moment 
and the on-board moment. The induced moment source is 
that produced by the mass of the vehicle as it moves in 
the vicinity of the magnetometer. The on-board moment 
source is produced by all the other electrical systems that 
are part of the vehicle. These include electric motors, 
centrifugal oil filters, radar emissions, tachometers, 
radios, etc. Figure 7 is a good example of a magnetic 
signature that depicts both magnetic moments. 
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Figure 7. Magnetic Signature depicting the Induced 
and On-Board Moments 

The magnetic signature depicted in Figure 7 is a good 
representation that contains the induced and on-board 
moments. The sine wave is indicative of the induced 
moment and the modulation is contributed by the on- 
board moment. 
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SAM SIGNATURES FOR BDA 

The Chicken Little Joint Program Office has pioneered 
the use of SAM sensors for battle damage assessment 
purposes. A recent test was conducted in cooperation with 
the German Government at the Meppen Test Facility, 
Meppen, Germany. The test involved the use of an 
operating SA-6 Radar vehicle and the complementary 
units typically found in this type of setting, and the 
detonation of an Improved HARM warhead. 

BDA Acoustic Findings 

An Improved HARM Warhead was detonated in the 
immediate area to determine the effects produced by the 
warhead. SAM sensors were deployed in the field to 
collect signatures from the explosion. Some of the SAM 
sensors were deployed one meter below the ground 
surface, and others remained on the surface. The sensors 
were placed 150 meters from the operating SA-6 Radar 
vehicle. In a situation like this, prior to any data analysis, 
it is advisable to look at the analog data stream in the time 
domain. A time history places the events in perspective. 
Figure 8. Shows acoustic data from a microphone buried 
one meter below the ground surface. 
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Figure 8. Acoustic Signal Time History from SA-6 
Radar Vehicle Engine and Improved HARM Warhead 
Detonation 

The dominant acoustic harmonics of an operating engine 
emanates from its exhaust port. This acoustic product, 
composed of low frequencies, propagates over long 
distances. The SA-6 Radar vehicle followed this trend. 
Although the APU was on at the same time, its acoustic 
product did not propagate over a long distance. The 

environment readily attenuates acoustic high frequencies 
from the APU. 

The engine exhaust acoustic product is a combination of 
harmonics. These harmonics can be found by doing a 
spectrogram of the analog signal. The dominant 
harmonic, or engine firing frequency, results from the 
engine operating at a specific rpm value. 

In Figure 8, the SA-6 Radar vehicle is stationary and the 
engine is operating at a specific rpm. This is defined as 
normal engine operation. The warhead detonates and 
specific areas of the explosive signature become evident. 
The engine trying to compensate immediately follows the 
explosion event. It is evident that loads are being placed 
on the engine. Engine loading is the result of breakers and 
fuses from the electrical system blowing and popping. 
Warhead fragments have hit the active SA-6 Radar dish 
causing electrical shorts. Afterwards, the engine stops 
compensating because all electrical malfunctions are no 
longer taking place. The radar is now off line. Now the 
acoustic time line history plot shows that the engine runs 
rough. Actually, the rpm value changed as result of the 
detonation. 

BDA Magnetic Findings 

A military vehicle such as the SA-6 Radar is a self- 
propelled ferromagnetic mass. It is therefore reasonable 
to expect that the detection and classification scheme 
based on a stationary magnetic sensor would prove useful 
in situations involving vehicles of military interest. The 
physical principal involved is that a ferromagnetic mass 
exhibits an induced magnetic moment when placed in the 
earth's magnetic field. The magnetic field of this induced 
dipole distorts the uniform geomagnetic field that can be 
detected by a magnetometer that produces a signature 
depicting the disturbance. 

In addition to the induced moment, there exists a second 
magnetic moment, which contributes to a vehicle's 
magnetic signature. This moment, called the "on-board" 
moment, has for its origin electrical phenomena and 
mechanical motion created by the vehicle. A portion of 
the on-board moment is also due to the residual magnetic 
effects in the vehicle material due to long-term 
positioning in the geomagnetic field. 

BDA Magnetic Findings 

The stationary SA-6 Radar vehicle was located 150 
meters away from the magnetometer. In this 
configuration, the magnetometer has to rely on sampling 
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"on-board" moment activity as it takes place aboard the 
SA-6 Radar. The primary source is the on-board 
magnetic activity that results from the one (1) Watt radar 
magnetic emanations. Sampling of the induced moment 
at this distance is a problem because the data would be 
lost in the background noise. Thus, all efforts must be 
focused on the on-board moment activity. 

The magnetometer was set up to sample emanations in a 
spectral region of less than (forty) 40 Hz. Magnetic data 
will now be presented showing two areas of interest. The 
magnetic samples before and after the warhead 
detonation. All magnetic data samples are presented in 
the time domain. 

Magnetic Background Noise at the Meppen Site 

A sampling of magnetic background noise was acquired 
to establish a baseline. This sample was collected with 
the SA-6 Radar vehicle stationary and all systems off. 
Figure 9 shows that the average magnetic background 
was 15.0 mGauss. 
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Figure 9. Magnetic Background Noise at the Meppen 
Test Site, Germany 

The SA-6 Radar vehicle engine is now in operation and 
the radar is emanating 1 Watt of power. It must be noted 
that the magnetometer is sampling the backside of the 
SA-6 Radar dish. Figure 10 shows that the magnetic 
levels now average 140.0 mGauss. 
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Figure 10. Magnetic Signature from the Backside of 
the SA-6 Radar Vehicle, Before Warhead Detonation 

The HARM warhead detonation has taken place. 
Magnetic effects from the warhead detonation are added 
to the radar's magnetic field. Figure 10 shows the 
magnetic data sample immediately after the detonation. 
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Figure 10. Magnetic Data Sample from the Backside 
of the SA-6 Radar Vehicle, Immediately after 
Warhead Detonation 

The radar begins to show additional signs of magnetic 
decay. Emanations begin to decrease rapidly. The 
signature begins to show random attempts by the vehicle 
electrical systems to compensate. Metal debris from the 
HARM warhead has penetrated areas of the radar dish. 
Other fragments found their way to critical sections of 
waveguide that connects the transmitter to the dish. 
See Figure 11. This data sample was collected 11 seconds 
following the detonation. 
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Figure 11. Magnetic Signature from the Backside of 
the SA-6 Radar Vehicle, Eleven Seconds After 
Warhead Detonation 

The radar continues to show significant signs of magnetic 
decay.   Emanations are now at a very low level.   The 
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signature continues begin to show a random effect.   See 
Figure 12. 
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Figure 12. Magnetic Signature from the Backside of 
the SA-6 Radar Vehicle, Thirty Seven Seconds After 
Warhead Detonation 

The magnetic signature from the SA-6 Radar on-board 
moment is now approaching the background noise 
baseline value of 15.0 mGauss. 

Magnetic Data Comments 

It can be concluded that the magnetic sensors could be 
placed at a farther distance, if the SA-6 Radar Vehicle 
transmitter were to operate without a dummy load. The 
low frequency magnetic sampling of the on-board 
moment data from active radio frequency transmitters 
opens many areas of interest. 

METEOROLOGICAL AND ACOUSTIC 
PROPAGATION MODELS 

The environment has a dramatic effect on the 
transmission of acoustic signals through the atmosphere. 
Transmission affects different frequencies differently so 
the received signal spectrum also depends upon 
atmospheric conditions along the propagation path. The 
phenomena that most seriously affect the received signal 
are refraction, which results from gradients in wind or 
temperature, and scattering by atmospheric turbulence. 
During the day, the ground heating can result in high 
temperatures near the ground decreasing with height. At 
night, this situation often reverses. The speed of sound is 
proportional to the square root of temperature so 
temperature gradients result in speed of sound gradients. 
Since refraction depends upon a gradient in the speed of 
sound, the temperature and wind speed and direction 
should be measured as a function of height. As a rule of 

thumb, the measurement of temperature and wind should 
extend to a height approximately equal to one tenth of the 
longest propagation distance. 

A minimal measurement system places temperature and 
wind sensors at different elevations on a tower. These are 
at surface, 1 meter, 3 meters, 5 meters, and 10 meters. For 
acoustic collections involving propagation distances 
greater than 100 meters the use of radiosondes is 
recommended. This methodology complies with RCC 
Meteorological Standards. 

Data from these meteorological conditions and devices 
are used to develop propagation models. 

SAM DATA BASE 

SAM signatures should be archived in a database that is 
user friendly and can be accessed by an ordinary 
computer. The SAM data must be accompanied by 
ground truth. Ground truth is additional technical 
information that adds substance to the interpretation of 
SAM data. Documentation is the key factor. The SAM 
RCC Standards document ground truth requirements. 

SUMMARY 

Seismic, acoustic, and magnetic sensors are passive, non- 
line of site devices that have a place in the detection and 
classification of military vehicles. The uses of new signal 
processing methods with the SAM data have proved that 
these low cost devices have a place in the battlefield. 
SAM sensors are frequently used to monitor front line 
activity and gather intelligence regarding a threat. 

The use of the SAM sensors for BDA applications at the 
Meppen facility yielded a wealth of information. SAM 
sensors were placed in the near and far field for the 
purpose of gathering vehicle information. The vehicle of 
interest was the SA-6 Radar. Geographical placement of 
the SA-6 Radar and the SAM sensors, placed the far field 
sensors at a disadvantage. Despite the impediments, the 
SAM findings were very encouraging in determining the 
health of a damaged vehicle. 

Discussion herein included descriptive information about 
vehicular sources that can be sampled by SAM sensors. 
Samples of vehicle signatures show areas that are 
typically used in the business for exploitation purposes. 
Procedures for collecting signatures, calibration 
techniques, and meteorological data are dictated by Range 
Commander  Standards.  Data basing  of quality  SAM 

158 



signatures and updating the system is necessary. These 
inputs play a key role in the development of realistic 
SAM models. 
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Using the TARDEC Acoustic Ground Array to Determine 
the Characteristics of the Band Track 

Edward Shalis and Douglas Freese 
U.S. Army Tank-Automotive and Armaments Command 
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ABSTRACT 

An acoustic ground array was initiated 
by SenTech under a Phase 1 SBIR (Ref 
1) to enable TARDEC to measure and 
locate acoustic sources. This program 
was enhanced by a joint TARDEC- 
SenTech effort that concluded with an 
operational system. During August of 
1998, the ground array was used to 
determine the expected noise/vibration 
reduction of the flexible composite band 
track. 
During detection, detections that were 
within the vehicle's path were added and 
a single percentage point of detection 
was formed for that speed and range. 
These summations were repeated for 
other ranges so that percentages of 
detection could be plotted as a function 
of range, for several vehicle speeds. This 
was done for the T-130 steel track and 
the band track. Finally, differences 
between the two tracks were plotted as a 
function of range for several speeds. 
Results show that a significant 
noise/vibration reduction is offered by 
the increased compliance and flexibility 
of the band track. However, this is offset 
by the inclusion of cleats, which are 
required to provide the necessary 
traction. Chordal action is not eliminated 
since the cleats themselves form a rigid 

series of "track shoes". The existence of 
the band track cleats is a limit to the 
further reduction of noise/vibration 
offered by the present band track. 

BACKGROUND 

The Standard Steel Track 
Large vibrations originate in regular 
steel tracks when track shoes interact 
with suspension wheels and produce 
reaction forces in the hull that are 
transferred throughout the entire vehicle 
by the vibration field. A regular track, 
because of the finite size of its rigid 
track shoes, moves over the idler wheel 
and interacts with the sprocket in a series 
of chord-like-segments, instead of a 
continuous elliptical loop. This chordal 
action produces track shoe velocity 
variations, which lead to fluctuations in 
the track tension. The result is that the 
track tension changes produce forces at 
the sprocket and the idler wheels and the 
reaction forces then vibrate the hull. 
The track shoe chordal action (Ref 2) 
occurs at the track laying frequency, so 
that major portions of the hull vibrate at 
a fundamental frequency. The track 
laying fundamental frequency is 
determined by the vehicle's speed and 
the length of the track shoes and can be 
expressed in the following units: 
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Frequency (Hz) = 17.6*Vehicle Speed V 
(raph) / Shoe Length (in) 

Equation (1) 

For the baseline Ml 13 vehicle, the track 
shoe length is 6 inches and the 
fundamental track laying frequency can 
then be approximately expressed as: 

Frequency (Hz) = 3 * V (mph) 
Equation (2) 

The track input forces also contain 
energy at many other frequencies which 
produce a broadband of vibrational 
inputs into the vehicle hull and a 
broadband of frequencies in the radiated 
acoustic spectrum (Ref 3). Thus machine 
detectors, such as acoustic ground arrays 
that we will use to measure the track 
signature, detect a fundamental 
frequency and its harmonic line set of 
track laying tonals superimposed on a 
broad band track signature. 

Steel Track Acoustic Spectrograms 
Figure 1 shows an acoustic spectrogram 
of the baseline vehicle moving at 10 
mph while measured by a ground array 
located 900 feet from the vehicle. The 
fundamental track laying frequency of 
the baseline track occurs at 30 Hz, which 
is consistent with equation 2. The figure 
also shows two harmonics occurring at 
60 and 90 Hz. It is this harmonic set of 
track laying tones that is detected by the 
ground array and is used to detect and 
follow the path of the vehicle. Since the 
exhaust signature of the vehicle contains 
less radiated energy than the radiated 
track/hull signature, and is facing away 
from the array in this run, the engine 
harmonics are not as intense. The 
fundamental engine firing frequency of 
75 Hz and its harmonic set containing 

150 and 225 Hz can be seen in the 
figure. Thus, both primary sources of 
vehicle signature, track and engine 
exhaust, need to be reduced to lower the 
detection of the vehicle. However, it is 
the track tonals that play the major role 
beyond 2000 feet, where atmospheric 
absorption will have reduced the engine 
harmonics and tracking becomes solely a 
detection of the track signature 

THE BAND TRACK 

The flexibility of the suspension wheels 
and the track shoes determine the 
magnitude of the impact forces for a 
given vehicle speed. The regular Ml 13 
track has inner compliant track pads that 
control the compliance between the 
suspension wheels and the track. The 
tested band track should show 
significant signature reduction because 
of its increased compliance and 
flexibility. However, this is offset by the 
inclusion of cleats in the band track 
which are required to provide the 
necessary traction. Thus, chordal action 
is not eliminated since the cleats 
themselves form a rigid series of "track 
shoes", which also generate chordal 
action. The purpose of the band track 
field test was to measure the effect of the 
reduced chordal action on the vehicle's 
signature as a function of vehicle speed. 
We can use equation 1 to determine the 
track laying frequency of the band track, 
since the Ml 13 band track's cleat 
distance is 4.5inches. Thus, the band 
track fundamental track laying frequency 

Frequency (Hz) = 3.9* V (mph) 
Equation (3) 

Figure 2 shows a spectrogram of the 
band tracked vehicle moving at 10 mph 
and detected at a distance of 500 feet 
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from the array. The harmonic set turns 
out to be 40, 80 and 120 Hz, very close 
to those predicted by equation 3. 

THE ACOUSTIC GROUND ARRAY 

The TARDEC acoustic ground array 
was used to detect the position of the 
vehicle and provide 3 second updates as 
the vehicle moved along the specified 
test path. Figure 3 shows the geometry 
of the 8 microphone acoustic ground 
array. The software for the array 
functions essentially as a delay sum 
beamformer, with delays introduced at 
each channel to bring the received 
signals in phase before summation. 
The array detected the harmonic line 
structure of the track and of the exhaust. 
There are two distinct areas of acoustic 
signature for the Ml 13 vehicle and the 
demarcation is the 500 Hz line. Sources 
below 500 Hz make up the primary 
signature measured for ground vehicles, 
namely the track and exhaust set of 
harmonic lines that are measured by the 
ground array. Signatures of ground 
vehicles above 500 Hz, are due to the 
cooling fan and the whine of the 
transmission and are outside the 
frequency range measured by the array. 
Bearings of detection were measured 
with three second position updates and 
plotted as the vehicle moved along its 
driven path. The vehicle's motion was 
then determined relative to the sensor 
array's axis for several speed runs. The 
array was then moved to a different 
location to provide detection versus 
range data. 
Since we stayed on the road behind the 
acoustic van, and the road curved away 
from a perpendicular to the vehicle path 
at stake #10, the detected path of the 
vehicle is curved because the line of 
bearing was closer to the array at the end 
of the vehicle's path when it was headed 

south (i.e. beyond stake #12). Likewise, 
the path was again curved when the 
vehicle started its northern run, since the 
vehicle was closer to the array at the 
beginning stages when it was headed 
towards stake #8. 
The array's detection performance is 
shown in Figure 4 for a vehicle speed of 
20 mph and a range of 1200 feet. The 
detection points were summed to 
achieve a numerical detection 
percentage. In the detection summation, 
the two detection points at 325 degrees 
and those that deviated from the 
vehicle's path by greater than 25 %, 
were not counted. 
The array was also able to detect and 

follow other sources simultaneously 
during the vehicle's measurement. Thus 
airplanes that were passing overhead and 
the movement of wheeled vehicles in the 
area, were followed. Figure 5 shows the 
simultaneous detection of the standard 
Ml 13 traveling south and the detection 
of a CUCV that was traveling to pick up 
personnel at the compound. It really 
didn't matter which direction the second 
vehicle was coming from, as long as the 
set of engine harmonics were within 
4000 feet of the array. 
The band track vehicle's signature was 
tracked by the existence of track cleats, 
which provided mobility and supplied 
the sources of chordal action. So, even 
though the band track signature was 
reduced, it was not eliminated. Figure 6 
shows the detection of the band tracked 
vehicle moving at 20 mph and measured 
at 900 feet. Again a percentage of 
detection was determined for this speed 
and range. 

RESULTS 

The data collected by the array was 
arranged so that the percentage of 
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detection could be calculated for each 
vehicle speed and then comparisons 
were made between the regular and 
banded track. Figure 7 shows the 
detection versus range results for the two 
types of track for 10 mph. The vehicle 
exhaust is facing the array in this case. 
The data shows that the band track is 25 
% quieter than the regular track. 
Figure 8 are the detection versus range 
results for the regular and the banded 
track for 20 mph with the exhaust facing 
the array. The band track is quieter by 35 
%. The standard track signature is 
significantly greater at these higher 
speeds and this is also where the band 
trackshows important signature 
reduction. 

CONCLUSIONS 

The results of this study lead to the 
following conclusions: 
1. The acoustic ground array detects the 

two primary sources of ground 
vehicle signature- the harmonic line 
structure of the track and the engine 
exhaust. 

2. The track tonals are the dominant 
signature for vehicle speeds above 
15 mph. For distances greater than 
2000 feet, the engine tonals have 
been reduced by the atmosphere. 

3. The signature reduction offered by 
the band track increases with vehicle 
speed, with 25 % reduction at 10 
mph and 35 % at 20 mph. 

4. The track tonals, due to their low 
frequencies below 100 Hz, will 
propagate across hilly terrrain and 
make the vehicle vulnerable at 
greater distances. 

5. The track tonals are not eliminated 
by the band track due to the 
existence of cleats. The cleats are a 

limiting factor for band track 
signature reduction. 
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Figure 3. The geometrical ground array pointing north 
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Figure 4. The regular M113 being tracked at 1200 feet for 20 mph. 
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Figure 1 A spectrum of the baseline Ml 13 measured at 900 ft while moving at 10 mph. 
The track tonal harmonic set is at 30,60 and 90 Hz. The engine fundamental firing 
frequency of 75 Hz and harmonics at 150 Hz and 225 Hz are used to follow the vehicle 
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Figure 2 Spectrogram of the band tracked vehicle moving at 15 mph and detected by 
the ground array at 500 feet with the exhaust facing the array. 
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Figure 5. The ground array tracking two objects: the one on the left is the regular 
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Figure 6. The band track vehicle detected at 900 feet 
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Regular M113 vs Band Track for 10mph (Exh Side) 
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Figure 7. Detection versus range comparison for the two types of track at 10 mph 

Regular M113 vs Band Track for 20 mph (Exh Side) 

0 

0 

0 

s. 
c 

•go 
o 
f I 
•o 

0 

0 

0 

HI; 1'im'MM' 

• 2lr.       *20b.    i; 

  
spa 
ft**'- 

•* .*..—  
HMMMH11,1 MHI M IMflllHtMHIl* 

 ...- ......   •"*»  

1000 1500 

d istance (ft) 

Figure 8. Detection versus range comparison for 20 mph 

167 



Hyperspectral Algorithm Development for Army Applications 

Marcos Sola and Dan Beekman 
U.S. Army Research Laboratory 

Adelphi, MD 20793-1197 

Abstract 

We are adapting classic hyperspectral algorithm ap- 
proaches to Army targeting applications. Principal com- 
ponent analysis and spectral matching are being combined 
with polarization and spatial information for the detec- 
tion of targets in cluttered backgrounds. The ground-to- 
ground perspective introduces differences in targets and 
backgrounds compared with the usual high-altitude per- 
spective of most remote sensing applications and databases. 
The acousto-optic tunable filter (AOTF) approach we have 
chosen also enables the use of multipass adaptive analy- 
sis in which a few spectro-polarimetric bands can be used 
for identifying regions of interest. Depending on the ini- 
tial analysis, additional bands can be dynamically chosen 
to provide more discrimination. We acquired our data set 
with an AOTF sensor developed and tested by the Army Re- 
search Laboratory and the Carnegie Mellon Research In- 
stitute. The sensor provides imagery with variable polar- 
ization and spectral filtering over the visible and near in- 
frared bands. Preliminary results obtained with a software 
image-processing system called Environment for Visualiz- 
ing Images (ENVI) will be presented, along with plans for 
future collaborative activities within the Army Center of Ex- 
cellence for Spectral Sensing Technology. 

1. Introduction 

Hyperspectral data have, for the most part, resided in 
the domain of the remote sensing community. These data, 
mostly in the visible through the short wave infrared and 
some in the mid- to far-infrared have been exploited for 
dual-use applications. In the commercial arena, these hy- 
perspectral data (at the appropriate wavelength) have pro- 
vided agricultural, geological, and terrain feature charac- 
terizations. For military applications, the hyperspectral 
data can detect (and possibly identify) chemical/biological 
agents and gaseous effluence from tactical targets, and serve 
as a countermeasure technology against high-value ground 
targets that employ camouflage, concealment, and decep- 
tion (CCD) techniques.  Figure 1 depicts the atmospheric 

Figure 1. Atmospheric transmission as a func- 
tion of wavelength and related applications. 

transmission as a function of wavelength and shows the var- 
ious regions of the electromagnetic spectrum and their in- 
tended application [1]. 

2. Army Requirements 

For Army tactical applications, the interest in the sensor- 
to-target perspective is from ground-to-ground and from a 
shallow look angle, such as for a helicopter performing tar- 
get acquisition at treetop level. We believe that there are dif- 
ferences in the requirements between what the Army needs 
versus the needs of the remote sensing community. Most 
of the data collection by the remote sensing community is 
done from a high altitude, looking down. The differences 
in these needs are shown in table 1; most noticeable is the 
small number of databases for ground-to-ground target ac- 
quisition data—this is a significant signature gap. 

A top-down view of a target such as a tank does not need 
to convey much information for target acquisition. From 
a ground perspective, however, a target can present itself to 
the sensor in many aspect angles. Thus, a signature database 
would be quite large, and the computational time for sig- 
nal processing may be significant for an automatic target 
recognition (ATR) sensor. Hyperspectral data collection by 
the remote sensing community is done via air breathers and 
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Table 1. Comparison between remote sensing 
community and Army tactical hyperspectral re- 
quirements. 

Requirements Remote sensing 
community 

Army tactical 

Angle of view Top-down angle Ground-to-ground; 
of view from an shallow angle of view 
aerial platform 

ATR requirements 1 aspect angle Multiple aspect angles 
(front, sides, and rear) 

Primary function Terrain Target detection, 
categorization classification, 

recognition, 
identification 

Acquisition level Subpixel resolution Several pixels on target 
B ackground/clutter Remote Close-in 
Atmospherics Clouds, varying Turbulence, dust, smoke, 

pressure level other obscurants 
Signature databases Many Few-a significant data 

gap 

satellites. The primary intent is to categorize terrain, vege- 
tation, roads, or mineral deposits. This can entail subpixel 
classification depending on the altitude and resolution of the 
sensor. The Topographical Engineering Center (TEC), an 
Army agency, falls under this category. The decision to 
fire a missile on a target will not be made based on spec- 
tral information alone unless the data have been made part 
of a data fusion schema. In a tactical engagement, the hy- 
perspectral imager (HSI) will have many pixels on target. 
Hence, the HSI provides the shooter with both spectral and 
spatial features of the target signature. This is a desirable 
feature for counter-counter measure (CCM) against tactical 
targets operating in a realistic battlefield scenario (see fig. 
2). 

Besides the difference in the background and clutter due 
to the line-of-sight perspective, we believe that the impact 
of atmospherics on target acquisition will also be different. 
For ground-to-ground target acquisition, turbulence could 
prove to be more of a problem than for remote aerial sens- 
ing. There is a hyperspectral signature database gap for 
Army tactical requirements. This gap, especially in the 
mid- to the long-infrared wavelengths needs to be popu- 
lated with high-quality signature measurements to be usable 
for HSI design, prototype enhancements, and algorithms 
and modeling and simulation development as well as for 
phenomenological understanding of the signature dynam- 
ics. These research and development initiatives do impact 
measurement and signature intelligence (MASINT) capa- 
bilities in the near term. 

(b) 

Figure 2. Tanks under (a) test and (b) battle- 
field conditions. 

3. Army Center of Excellence 

Within the Department of Defense, the Deputy Direc- 
tor for Research and Engineering (DDR&E) has created an 
Integrated Process Team (IPT) to exploit the hyperspectral 
data for Army applications. In 1997, the IPT recommended 
that the following key elements to be addressed: 

• Target signature libraries: To establish a library of key 
target and feature signatures. 

• Background signature libraries: To build a library of 
well-characterized backgrounds and environments. 

• Algorithm development and evaluation: To develop 
and evaluate algorithms for processing hyperspectral 
data and target detection. 

• Sensing performance limits: To determine attainable 
HSI performance. 

• Predictive model validation: To define necessary and 
sufficient metrics for a robust model validation. 

In response to these recommendations, an Army Cen- 
ter of Excellence was established [2] that consists of TEC, 
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the Night Vision and Electro-Optics Directorate (NVESD), 
the Space Missile Defense Technology Center (SMDTC), 
and the Army Research Laboratory (ARL). Within ARL, 
the participants are the Army Research Office (ARO) and 
the Sensors and Electron Devices Directorate (SEDD). 

4. ARL's Hyperspectral-Related Projects 

Our interest and investment in the hyperspectral arena 
complements the findings of the IPT. We are perform- 
ing HSI prototype development and characterization using 
acousto-optical tunable filter (AOTF) technology. We have 
performed field experiments on the visible to near-infrared 
and short wavelength infrared (SWIR) in conjunction with a 
visible to near-infrared grating spectrometer from the Naval 
Research Laboratory (NRL) to gather data. The intended 
use of these data is to further HSI enhancements and sig- 
nature analysis to support signature phenomenology under- 
standing, modeling and simulation, and ATR algorithm de- 
velopment and to ease the computational burden in signal 
processing for target acquisition. We are also developing 
dual-color broadband FLIRs via our Federated Laboratory 
program—FedLab [3]. Our goal is to be able to identify hy- 
perspectral technologies for Army tactical applications and 
identify data gaps. 

4.1. Comparison of Hyperspectral Systems 

Hyperspectral imagers can be based on a variety 
of spectral dispersing elements; for example, gratings, 
prisms, Fourier transform infrared (FTIR) spectrometers, or 
acousto-optic tunable filters (AOTFs). Each of these sys- 
tems is subject to constraints, such as small angular accep- 
tance (large / number) and narrow spectral passband, that 
limit the photon flux and decrease the detector signal-to- 
noise ratio (SNR) compared to the broadband case. Some 
SNRs can be regained by increasing the integration time or 
cooling the detector. 

The systems differ in the method that they use to create 
an x-y-X data cube with a two-dimensional detector array. 
Both the grating and prism systems acquire y-X images and 
scan the a;-dimension with scan mirrors or platform motion 
to create the x-y-X cube. The AOTF system acquires x-y 
images and scans A in successive frames. The FTIR system 
acquires x-y interference patterns and scans the spectrom- 
eter mirror to create an interferogram for each pixel. An 
inverse Fourier transform is performed to create the x-y-X 
data cube. Each of these techniques has benefits and draw- 
backs, and the choice of system depends on the application. 

5. Hyperspectral Signature Analysis 

We are working with our FedLab partners but taking a 
different approach in the signature analysis of a hyperspec- 
tral signature (HSS) database. Our goal is to identify for 
each class type and class set the specific bands for which 
there is a unique feature in spectral response. We then 
intend to use band ratios or image subtraction plus other 
nonintensive computational algorithms to extract the target 
from the background/clutter. We want to be able to catego- 
rize unique hyperspectral bands over a wide dynamic range 
of the HSS database suited for Army tactical requirements. 
This approach can use the advantage that AOTF technol- 
ogy offers for selecting specific bands for target acquisition 
signal processing in real time. 

5.1. Image cube 

A software image-processing system called Environment 
for Visualizing Images (ENVI) [4] was used to generate the 
image cube shown in figure 3. These data were taken with 
a visible to near-infrared AOTF sensor at Fort AP Hill, VA 
[5]. For a given pixel (x,y) in the scene, we follow the usual 
convention of the three-profile plot definition. The x- and y- 
profile distribution provides the reflectance as a function of 
sample and detector line as shown in figure 3. The plot is for 
a single hyperspectral wavelength. Figure 3 also shows the 
^-profile, which gives the reflectance for a single selected 
pixel as a function of the hyperspectral wavelength that is 
layered in the z direction. 

5.2. AP Hill Data (June 1998) 

Figure 4 (a) is an image scene at 760-nm wavelength. 
Several regions of interest (ROIs) were selected and plot- 
ted as shown in figure 4 (b). The number of sampled pixels 

x-profile y.profne 

:fly 

Wivtl«nglfi (nm) 

Figure 3. Image cube. 
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for each different ROI was not kept constant but the number 
was at least greater than 50. Other than the difference in 
the reflectance value for some ROIs, the shape of the curves 
appeared to be similar. This is probably due to the large 
number of pixels sampled for a given ROI. In doing this, 
the resolution of the purity of the pixels chosen to belong 
to a given class was degraded. If we take the peak of the 
reflectance response at A?6o> subtract the next peak from it, 
and then apply a low-pass filter, we obtain figure 4 (c). In 
this figure, as compared to figure 4 (a), there appears to be 
an area of interest in the search sector to which other fused 
sensors can be directed for further data interrogation. Figure 
4 (d) is a camcorder image of a high-mobility multipurpose 
wheeled vehicle (HMM WV) at a range of 1.2 km. The ve- 
hicle is presented at its right-side aspect angle. A similar 
figure can be inferred from the processed image (see fig. 4 
(c)). This technique is appealing because the computational 
burden to process the data was not intensive. However, per- 
forming these operations for other peaks, other polarization 
angles, and other targets at different scenarios did not pro- 
vide any interesting information. A single pixel sampling 
for the various parts of the HMMWV target is shown in fig- 
ure 5. To enhance the analysis for determining if there are 
differences in the shape of the curves, the plots were stacked 
as shown in figure 6 so that the y-axis value is offset for 
clarity. In the spectral band between 550 and 650 nm, a dif- 
ference in the slope of the curve between the front and rear 
tires versus the rear panel and the Plexiglas window can be 
inferred. This is an example of a spectral relationship be- 
tween different classes that can be categorized and studied 
to see if spatial information can be obtained. 

250 - 
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Figure 4. (a) Image scene of an HMMWV at 
760 nm wavelength, (b) plots of several re- 
gions of interest, (c) image scene after apply- 
ing low-pass filter, and (d) camcorder image of 
HMMWV. 
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Figure  5.  Single  pixel  sampling for  parts of 
HMMWV target. 
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Figure  6.   Stacked  plots of various  parts  of 
HMMWV target. 

Figure 7 shows a principal component analysis (PCA) 
performed on the data representing 45° polarization mea- 
surements.  Most of the information for the scene is con- 
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tained within the first three bands. Figure 8 (a) is the orig- 
inal scene at A760 as compared to figure 8 (b), which is the 
first principle component; figure 8 (c), the fifth principle 
component; and figure 8 (d), the sixth principle component, 
where the scene is mostly noise. If the target's signature 
falls along the noise level of the background/clutter (as with 
a low observable or a target using CCD), detection using 
this technique alone will provide a high false-alarm rate. 

Figures 9 (a) through (d) are image scenes at 760-nm 
wavelength and polarization angles of 0°, 45°, 90°, and 
135°, respectively. A 2-profile taken at about the centroid of 

8 10 
Band 

12 14 16 

Figure 7. Principle component analysis of data 
taken at 45° polarization angle. 

the HMMWV is shown in figure 10. The 2-profiles for 45°, 
90°, and 135° polarization angles are similar. This group, 
on average, indicates some differences to that for 0° polar- 
ization. Using this spectral information at A760, a low-pass 
filter was applied to the image difference between 45° and 
0° polarization. This yielded the spatial information shown 
in figure 11. The scene shows a region of interest (side as- 
pect of a vehicle) that other sensors could be vectored into 
to gain more data on the suspected target. 

(a) (b) 

(0) (4 

Figure 9. Image scenes at 760 nm wavelength 
and polarization angles of (a) 0°, (b) 45°, 
(c) 90°, and (d) 135°. 
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Figure 8. (a) Original scene taken at Fort AP 
Hill, VA, and (b) first principle component, 
(c) fifth principle component, and (d) sixth 
principle component. 
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Figure 11. Image subtraction at A?6o and low- 
pass filter with (45° - 0°) polarization. 

5.3. LWIR Data Analysis 

Figure 12 is a z-profile at various single pixel ROIs taken 
from an image by an LWIR sensor [6]. Other than the ob- 
vious differences in the spectral radiance generated using a 
single pixel for different ROIs, the curves look similar. We 
need to be able to plot the 2-profile with a y-axis that shows 
the most sensitivity as a function of wavelength for differ- 
ent ROIs. The approach taken is to look at emissivity as 
a function of wavelength using the measured spectral radi- 
ance. Consider the measured spectral radiance LM(\). For 
a given snapshot in time, range, and atmospheric transmis- 
sion, we represent the measured spectral radiance as 

LMW = LBBW £ W^Mis, (1) 

where 

LBBW = blackbody curve, 

e(A) = emissivity, and 

A'M is = atmospheric transmission, 

but 

LBBW = 2c2/i/X5(ec'l/AfcT-l)(Planck,s equation), (2) 

where 

c = 2.99793E + 08 m/s, speed of light, 

h - 6.62620E - 34 J/s, Planck's constant, 

k = 1.308062E - 23 J/K, Boltzmann's constant, and 

T = 273 + °C, absolute temperature in degrees Kelvin (K). 

10 11 
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Figure 12. 2-profile at various single pixel re- 
gions of interest taken from an LWIR sensor 
image. 

From the measured data, find the wavelength (AMOI) that 
provides the maximum spectral radiance. Use this wave- 
length in Wien's displacement law: 

AjwaxT = 2898 Mm K. (3) 

T can be solved and used in equation (2) to generate the 
blackbody curve. If the blackbody radiation is taken at the 
same range (as the target for example) and degraded by 
the same atmospheric transmission, the apparent blackbody 
equation (LABB(^)) is given by 

LABBW = XM^LBBW- 

Dividing equation (1) by equation (4) yields 

e(A) = LM(X)/LABB{X). 

(4) 

(5) 

We can now generate the emissivity as a function of wave- 
length. For the data analyzed, the slant path from the tower 
(approximately 100 m high) to the open target was approxi- 
mately 500 m and was taken in the summer. For the purpose 
of this analysis, we set the atmospheric transmission to be 
unity. (The spreadsheet allows for any input in atmospheric 
transmission as a function of the wavelength if these data 
were collected as part of the ground-truth measurements.) 
A single pixel spectral radiance was generated for one tar- 
get and three different types of background (a dirt road, a 
shaded tree, and an area shadowed by trees). The digitized 
measured data showed a maximum spectral radiance along 
with the calculated absolute temperature and are shown in 
table 2. 

Figure 13 shows preliminary data using this emissivity 
approach. Relative emissivity is plotted as a function of 
wavelength. The shape of each curve is more important (at 
least for now) than the absolute value. Our next task will 
be to identify bands of interest and attempt to extract spatial 
information to locate the target. 
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Table 2. Four object classes were sampled using 
a single pixel to generate the z-profile. The ab- 
solute temperature was from Wien's displace- 
ment law using the hyperspectral wavelength 
that produced the maximum measured spectral 
radiance. 

ROI AMax Band No. T(K) 
Din road (72, 73) 9.7638 38 296.81 
Tree (72,41) 9.7638 38 296.81 
Area shadowed by trees (72, 56) 9.7638 3K 296.81 
Target 1 (72. 65) 9.8165 39 295.22 

showed a target that is part of the principal components that 
an anomalous detection algorithm will reject is not known. 
A generic problem with most algorithms is that they usually 
perform well on the database that they are trained on. How- 
ever, over a wide dynamic signature range, the algorithm's 
performance has the potential of deteriorating to an unac- 
ceptable level. Another algorithm developer that we are 
working with under a FedLab agreement is ERIM. ERIM is 
taking several approaches. These include neural networks, 
a pairwise adaptive linear matched filter, and apparent tem- 
perature versus wavelength. In addition, TEC has large 
holdings in a hyperspectral database library that includes 
calibrated signature data on various trees, grassy roads, ma- 
terials, and other terrain features. 

10 11 

WavWngth (ran) 

Figure  13.   Preliminary data  using  emissivity 
approach. 

5.4. Other Algorithms/Tools 

There are numerous hyperspectral algorithms/tools that 
are available. Both Applied Signal and Image Technol- 
ogy (ASIT), Inc., [7] and NRL make use of an anomalous 
detection algorithm. This is further enhanced using algo- 
rithms developed internally within the respective company 
or laboratory. ASIT's software and NRL's Orassis software 
showed good results on the respective database that the soft- 
ware was tested against. Figure 14 shows ASIT's algorithm 
identifying targets/features of interest. The data were taken 
with a visible to near-infrared sensor from an overhead plat- 
form. The targets/features identified include U.S. military 
vehicle paint under various conditions: by itself, under cam- 
ouflage, and under camouflage/vinyl nets. Also identified 
are beach defenses and barricades as well as some spectral 
anomalies. Both algorithms were not able to find the target 
in the AP Hill experiment that was described earlier in this 
paper. Whether this is a problem with our data set, a glitch 
in the software used, or simply because the AP Hill data 

6. Conclusions 

The following preliminary conclusions have emerged 
based on our work to date: 

• There does not appear to be an algorithm that would 
detect/identify tactical targets over a wide dynamic 
signature range. Most of the success is from a database 
that the algorithm was trained for. 

• For Army tactical applications, there is a hyperspec- 
tral signature database gap for the ground-to-ground 
perspective in the visible through the long wavelength 
infrared spectral band. 

• Hyperspectral imagers can provide spectral and spatial 
information to enhance target discrimination. 

• AOTF imagers are rugged fieldable systems for obtain- 
ing hyperspectral data. 
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Figure 14. ASIT algorithm results of identified 
targets/features of interest. 
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ABSTRACT 

Imaging spectroscopy with a simultaneous spectral/spatial 
infrared sensor is described and discussed. This new 
technique uses spatial information on a two dimensional 
focal plane to calculate the spectral content of the image. 
The object cubes produced are available at 30 fps. A 
MWTR instrument will be described which could be used 
to identify fuel mixtures and exploding ordinances. 

INTRODUCTION 

Collection of spatial and spectral information has both 
military and commercial applications, where not only the 
location of the event is important to the observer but also 
the spectral content for identification. Up to now, 
simultaneous imaging and spectrometry were impossible. 
Spectral images were obtained by scanning in time or 
space. Recent research developments have produced an 
imaging spectrometer, which simultaneously collects both 

spectral and 2D spatial information about a scene . To 
demonstrate our concept, it helps to think of a 
hyperspectral object cube as shown in Fig. 1. 

Whisk 
broom 
Scanfte 

Fig. 1. Object cube collected conventionally. 
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Fig. 2. Reconstructed CTIS snapshot object. 

Fig. 3. Projections of the object cube onto the 
focal plane. Spectral information along the 
vertical axis of the object cube is projected along 
the radial coordinate of the focal plane and 
multiplexed with spatial information. 

The object cube represents the x, y, X information of a 
scene. Any slice through the cube parallel to the x-y 
plane represents a monochromatic image. Shown in Fig. 1 
are different conventional approaches to acquiring the 
data within the object cube. Note that they all require 
SCANNING to fill the three dimensional space. The 
Computed Tomographic Imaging Spectrometer (CTIS) 
obtains information about the entire object cube each 
frame time as shown in Fig. 2. This allows reconstruction 
of spatial and spectral information for the scene at each 
frame time, which is essential for scenes that change in 
space/wavelength with time. The CTIS approach to 
hyperspectral imaging was facilitated by the development 
of large two-dimensional arrays and fast computing 
capabilities. In order to acquire the spectra of the scene 
on a broadband detector array, an imaging technique, 
based on computer axial tomography (CAT), was 
adopted. This combination of technologies allowed the 
development of a no moving parts, optically simple 
instrument called CTIS . 

The spectrometer consists of three optical-element 
groups: an objective lens, a collimator lens, and a re- 
imaging lens. 

Objective 
Lens Field 

stop 

Instrument Layout 

Disperser 

^ FPA 

Collimating   Re-imaging 
Lens lens 

Fig. 4. Optical schematic of the CTIS 

OVERVIEW OF CTIS INSTRUMENT 

The driving concept behind the development of the CTIS 
is the reconstruction of a 3D object from 2D projections. 
The objective here is to record 2D projections of the x, y, 
X. object cube. If sufficient projections are recorded, then 
the original object cube can be reconstructed. These 
projections are shown schematically in Fig. 3. A two- 
dimensional array records these many "shadows" and 
reconstruction of the (x, y, X) object is accomplished via 
inversion methods. 

The use of AR coated lenses for the 3 - 5 urn band in the 
optical train greatly enhances the performance of the 
instrument. The Computer Generated Hologram (CGH) 
disperser is located in collimated space between the 
collimator lens and the re-imaging lens. The FPA in the 
prototype system shown in Fig 5. is al60 x 120 InSb array 
with 50 um pitch and 30% fill factor operating at 30 
frames per second and 5 msec, integration time. The 
Stirling cycle cooler built in to the camera enhances 
portability of the system. The 5mm square field stop maps 
to a 20 x 20 pixel area on the FPA. 
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Fig 5. Prototype MWIR CTIS. In the 
background, from left to right, a 100 mm focal 
length objective lens focuses the target onto a 
5mm square field stop. The field stop is 
appropriately minified and dispersed on to the 
InSb FPA by the combination of a 200 mm 
collimating lens, GaAs binary diffraction grating 
and 50 mm re-imaging lens. 

While the IR lenses were purchased from vendors, the 
two-dimensional binary disperser, which is actually a 
diffractive phase grating, was custom fabricated at the 
Optical Sciences Center in GaAs. The phase grating 
shown in Fig. 6, which has a period of 90 urn in both the 
x and y directions, was chosen in combination with the 
field stop size, the collimating lens focal length and the 
re-imaging lens focal length to place the zero and first 
diffraction orders with in the FPA periphery. 

100.00 

301.17 

Fig. 6. Wyko interferometer surface profile of 
the 2-D binary phase grating fabricated using 
reactive Ion Etching at the Optical Sciences 
Center by Michael Descour and Daniel Simon. 

The physical depth of the grating was initially chosen to 
be 0.7 urn based on a model derived from Goodman's 

treatment of a sinusoidal phase grating4. The depth was 
subsequently fine tuned by trial and error to 1.1 um to 
give reasonable irradiance uniformity across he FPA for a 
973 K blackbody target. 

CALIBRATION 

The MWIR CTIS calibration process is similar to the 
visible CTIS calibration process. The output port of a 
973 K blackbody is coupled directly into a computer- 
controlled monochromator with a 4-um blazed grating. 
The monochromator allows selection of spectral bands as 
narrow as 0.1 um. Since we do not have a suitable fiber 
light guide or coupling lenses available for such a 
waveguide, the output of the monochromator must be 
imaged into the field stop (via a fold mirror) from a 
distance using the spectrometer's objective lens. The exit 
slit of the monochromator is stopped down to a square 
with an opaque aperture. 

A fold mirror is used to position the calibration spot in the 
field stop so that it exactly fills four (50-um) pixels on the 
FPA. The monochromator is then scanned through 
wavelengths and a calibration image is acquired at each 
spectral band. Since the instrument is essentially shift 
invariant over each wavelength, the calibration images 
may be software-shifted to fill the field stop. There is 
currently no allowance for absorption over the path 
difference external to the objective, but absorption ova- 
such a short path should not be significant outside of the 
C02 absorption band from 4.2 to 4.4 um. There is also no 
normalization of the calibration images by the irradiance 
of the incident light. 

It is not yet established whether the objective lens is 
exchangeable, as in the visible instrument, under these 
calibration conditions. Assuming low aberrations from 
2.95 to 4.55 urn, (especially distortion) in the objective 
lenses, it should be possible to exchange objectives 
without losing calibration accuracy. It is very simple to. 
factor out the ratio of the spectral transmission of the 
exchanged objectives from the calibration images. This 
technique has been used to calibrate the MWIR CTIS 
with 10x10x8 (x,y,X,) voxels. The spectral sampling is 2 
physical pixels in size, which is the limiting spatial factor 
for this type of calibration. 

RESULTS 

Preliminary results have been obtained using laboratory 
targets such as blackbodies, blackbodies through 
narrowband filters and combustion products from a 
butane lighter. 
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Fig. 7. Raw images of laboratory test targets: a) 
350 C blackbody; b) 3.3 um narrowband filter in 
front of a blackbody. The image contrast has been 
reversed; the distance from the center order axis 
is proportional to wavelength. 

Fig. 8. Top: MW1R CT1S snapshot showing 823 
K blackbody spectrum with CO2 absorption band. 
Bottom: MWIR CTIS snapshot of an 823 K 
blackbody combined with hot CO2 from a lighter 
seen through a cross-shaped aperture. The center 
of cross appears near the location of the CO2 
absorption band. A 256 x 256 PtSi camera was 
used in a CTIS configuration for these two 
images. 
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RECENT IMPROVEMENTS 

A 299 mm objective lens and computer camera control 
have been recently implemented. By placing the 
camera's gain and offset settings under computer control, 
we have been able to greatly improve the system's 
sensitivity to objects heated less than 100 C above room 
temperature. Shown below is a photo of a black paint 
test target which consists of a piece of aluminum painted 
on the left side with Krylon ® Ultra Flat Black paint 
(#1602) and Krylon ® Semi Rat Black paint (#1613) on 
the right side. The left edge of the vertical black bar 
marks the dividing line between the two paints. The 
samples were heated to approximately 70 ° C on the hot 
plate and the commercial blackbody was set for 200 ° C. 

Fig. 9. The black paint test target is the 
horizontal bar on the hot plate. The left edge of 
the vertical black bar marks the dividing line 
between Krylon ® Ultra Flat Black on the left 
and Krylon ® Semi Flat Black paint on the right. 

The raw MWIR snapshot image of Fig. 10 demonstrates 
the spreading of the broadband image in the center into 
four primary diffracted orders which disperse the object's 
spectrum in the radial direction. Note that virtually no 
difference between the paints can be seen in the center 
image. The four brightest projections and the EM 
algorithm were used to reconstruct the spectral-spatial 
data cube. One spectral slice is shown in Figure 11. 
Resels A and B were chosen as representative of the 
Ultra Flat Black paint side; resels C and D were chosen 
as representative of the Semi Flat Black paint. Both paint 
samples should be at similar temperatures since they 
were sprayed onto a common slab of aluminum. Resel E 
is the sub-resolution blackbody source. 

Fig. 10. MWIR CTIS raw focal plane image of 
the black paint test target. The four brightest 
projections are arranged about the center order on 
roughly 45 degree diagonals. The bright streak in 
each of the projections is the 200° C blackbody. 
Background subtraction has been performed. 

Fig. 11. 3.95 - 4.15 um spectral slice of the 
reconstructed object cube. Resels A and B are 
Ultra Flat; C and D are Semi Flat. Resel E is the 
blackbody. 
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In Figure 12, the relative spectra of resels A, B and E are 
plotted against the band center wavelength; in Figure 13, 
the relative spectra of resels C, D and E are plotted in the 
same fashion. 

3.05      3.25     3.45     3.65      3.85     4.05 

Band center in urn 

4.25      4.45 

Fig. 12. Relative spectra of resels A and B on 
the Ultra Flat Black sample versus band center 
wavelength in microns. Resel E is the 200° C 
sub-resolution blackbody. 

Band center in um 

Fig. 13. Relative spectra of two resels C and D 
on the Semi Flat Black sample versus band center 
wavelength in microns. Resel E is the 200° C 
sub-resolution blackbody 

Inspection of these two figures reveals subtle yet 
significant differences in the spectra of the two paint 
samples. In the 3.85 - 4.25 um region, the Ultra Flat 
Black sample exhibits a shallow downward inflection; 
whereas, the Semi Flat Black sample shows a slight 
upward inflection. The Semi Flat Black sample has a 
distinct downward inflection centered in the 4.25 um 
band; whereas, the other paint does not. Even though 
C02 absorption exerts an influence on the data, as 
evidenced by the dip of the blackbody curve in the 4.25 
um band, the influence is equal for all portions of the 
reconstructed image since the target range of 14 meters is 

essentially constant for all resels. Therefore the relative 
spectral features observed above are truly indicative of 
sample differences. Thus the instrument has the 
capability to distinguish between objects which look 
identical to a broadband MWIR imager. The magnitudes 
of the spectral curves in Fig. 12 and Fig. 13 are strongly 
dependent on the extent of the source compared to a resel 
IFOV of 0.8 inches in this experiment. The 0.200 inch 
exit aperture of the blackbody reduces the magnitude of 
its spectrum compared to other resels. 

DISCUSSION 

The instrument could be used to distinguish between 
friendly and foe vehicles at nearly 30 fps when the targets 
are too distant to be sufficiently resolved for shape 
identification. Reconstruction time for the entire 10x10 
x 8 object cube is currently less than 30 milliseconds on a 
333 MHz Pentium II machine and anticipated advances 
in PC processing power should make larger cubes 
available in near real time. With a 256 x 256 array and a 
well-designed CGH disperser, 20 x 20 x 15 
reconstructions are practical. 

The instrument has also been proposed for use in armor 
kill assessment tasks. The presence of burning fuel versus 
burning propellant is the distinguishing feature of a soft 
versus a hard kill. In the 3.5 - 4.2 micron region, the 
combustion products from these two sources show 
sufficient spectral variation to make the problem tractable 
with as few as five spectral bands 

CONCLUSION 

We have demonstrated a high-speed snapshot imaging 
spectrometer prototype operating in the MWIR. Relative 
spectral mapping of an object has been demonstrated, 
although an absolute radiometric calibration of the 
instrument has not yet been performed. Future work 
includes performing this calibration to enable absolute 
temperature mapping and absolute spectral 
characterization. 
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ABSTRACT 

The Aviation and Missile Command (AMCOM) 
Missile Research Development and Engineering 
Center (MRDEC) has been investigating the 
performance of tactical infrared seekers against 
ground targets embedded in clutter. Figures of 
merit in this investigation include detection 
performance utilizing a generic auto-detection 
routine, a gray-level co-occurrence matrix track 
metric (GLCM-TM), 'Model A' clutter 
characterization, and tracker performance from 
three types of trackers. State-of-the-art infrared 
imagery from a captive flight test was utilized 
which consists of dynamic imagery in five-second 
segments at various ranges and environments 
including both stationary and moving targets. 
Previous evaluation of this data included man-in- 
the-loop (MITL) performance using fifty civilian 
observers, which will be compared with these non- 
MITL performance results. The detection routine 
and trackers used in the evaluation, though 
believed to be representative of current threat 
capabilities, are not program specific but 
demonstrate only generic capabilities. The 
purpose of this study was to evaluate trends 
between a clutter metric (Model A), auto-tracking 
prediction (GLCM-TM), and actual detection and 
tracker results. In addition, these results will be 
compared with observer performance. This paper 
will describe the auto-detection routine, the 
generic trackers chosen for evaluation, and the 
clutter and tracker figures of merit. Trends and 
comparisons will also be shown to illustrate how 
these characterizations can influence infrared 
seeker performance model improvements. All of 
these investigations are part of MRDEC's effort to 
understand and properly model low signature 
targets embedded in clutter. 

INTRODUCTION 

There are many ways to investigate seeker 
performance on an analytical level, but generally 
can be divided into two categories: MITL and non- 
MITL. Both of these areas are valid for seeker 
performance analysis depending on the system 
being studied. In FY98, an observer experiment 
was conducted utilizing unclassified imagery of 
ground targets embedded in clutter. Specific runs 
were identified for their difficulty; only those with 
visibly low signatures were analyzed. Over fifity 
observers were used to determine detection within 
twenty six runs of five second dynamic scenes 
taken from a captive flight test (CFT). Observer 
and modeled results were published for MITL 
analysis1. Another important analysis excludes 
the human observer; therefore, non-MITL 
performance and metrics were used in MRDEC's 
latest analysis which is the subject of this paper. 
This analysis falls in two general areas: 
background analysis ( Model A and GLCM-TM) 
and non-MITL performance analysis (auto- 
detection and tracking). The following sections 
will describe the methodology and results of each 
of these analyses. 

BACKGROUND ANALYSIS 

Clutter background analysis is a particularly 
important portion of performance evaluation for 
IR seekers. Detection performance is clearly a 
function of clutter level as it effects not only the 
signal to clutter ratios but also competes with the 
texture within the target itself. Two analyses 
were performed with the Gauss-Markov Model A 
metric and with the Gray Level Co-occurance 
Matrix Track Metric. These two metrics differ in 
one important aspect: target texture 
consideration. Model A is a two dimensional 
power spectral density representation of clutter - 
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only clutter. Whereas the GLCM-TM is a 
measure of how closely the target structure 
matches the background structure. Model A has 
been used with reasonable success for air defense 
seeker applications. With this application, the 
target structure is of little consideration as 
detection normally occurs with point sources or 
marginally extended sources (few pixels on 
target). The following two sections describe 
briefly the two types of background metrics and 
the results from the observer experiment. 

Gauss-Markov 'Model A' Metric 

The Gauss-Markov Model A clutter model 
characterizes clutter with a two dimensional 
power spectral density fit to represent various 
background types. Figure 1 depicts the 
calculation of the clutter PSD with this method 
using three parameters including global standard 
deviation in background temperature, clutter 
correlation length, and power roll-off. A more 
detailed description of Model A and its origin can 
be found in Reference 2. 

observer performance to determine trends. Figure 
2 shows this comparison. 

2D PSD MODEL 
(R„ 00 ,m) 

PSDfl,) 
2m Sin(2itrm) (H^a0f 

i-NF 

ACTUALPSD FROM SCENE 

o„- Global Standard Deviation 
of Background Clutter Temperatur > 

R„ • a utter Correlation Length 
(Average Sis of Clutter) 

m - Power Rolloff Exponent 
(Describes Clutter Texture) 

NF - Noise Floor 
(For Real/Measured Imagery) 

BEST FTT C0 ,Rj ,m, and NOSE 

NOISE FLOOR 

Figure 1. Gauss-Markov Model A 

The PSD of the clutter is integrated with the 
modulation transfer functions (MTF) of the 
system and signal processing to determine the 
residual clutter term denoted as oc and shown in 
equation 1. These parameters can be extracted 
from specific images or refenced from a clutter 
library by background type. 

ac
2 = XfMTF2sYs*MTFVPSDCLdfxdfy    (1) 

Figure 2. Clutter vs Observer Detection 

Though the clutter appears scattered based upon 
observer detection, the general trend (shown with 
the Line in Figure 2) appears to be as expected, the 
higher residual clutter levels result in lower 
detection. Reduction of scatter is also noticed for 
higher clutter levels suggestiong that in lower 
clutter levels, observers may leverage from other 
variables to make detections until the clutter level 
gets so large the target becomes difficult to 
distinguish and visual cues are suppressed. 

Grey Level Co-occurrence Matrix (Track Metric) 

The other background calculation investigated in 
this study was the Grey Level Co-occurrence 
Track Metric (GLCM-TM). The Track Metric 
measures the background and target structure 
and intensity levels in each image. It is strongly 
dependent on image, target, and aspect. Therefore 
calculations were made for each image sample. 
A detailed description of the GLCM-TM 
methodology has been previously reported [2,3] 
and will not be repeated here. However, the 
general concept is that the track metric compares 
spatial structure and intensity for both 
background and target. If target structure and 
intensity levels are very similar, the TM will 
reflect a low number, or low trackability measure. 
Because the GLCM-TM was originally intended as 
a replacement to delta temperature as a measure 
of required signature for acquisition, a trend was 
expected with man-in-the-loop detection because 
of its image-based dependency as humans also 
require. 

Residual clutter, cc.was calculated for each of the 
twenty six runs and were compared with the 
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Figure 3. Track Metric vs. Observer Detection 

However, Figure 3 shows that very little trend 
exists between the two for this experiment data. 
This could perhaps be attributed to the way the 
data is processed for the track metric vs the 
observer. In the experiment the observer had to 
search the FOV, but given the training prior to 
the test, had an idea of the "general" location of 
the target. The track metric, however, was 
calculated knowing the x,y coordinates and took 
into account only the most local background (2x 
the target gate size). Perhaps more consistent 
results would have been made with the observers 
if a larger background was considered in the 
calculation. 

One would also expect a level of dependency with 
clutter level. Figure 4 does show a trend as 
expected: higher clutter levels result in 
decreasing trackability (low track metric level). 
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Figure 4. Track Metric vs Model A Clutter 

Only the stationary target runs are included in 
Figure 3. The track metric is not dependent on 
moving targets whereas the residual clutter levels 
using the method in equation 1 are considered 
through the MTF calculation for MTI processing. 
When MTI processing is performed, only a 
minimal amount of residual clutter can be seen 
which is essentially constant for the moving target 

runs whereas the track metric varies the same as 
stationary type runs. 

PERFORMANCE ANALYSIS 

In this study, seeker performance was calculated 
in two ways: auto-detection and tracking. The 
auto-detection, not to be confused with automatic 
target recognition (ATR), is a fairly simple routine 
using common spatial filters to enhance target- 
like features in the image, and utilizing a 
threshold to produce detections. Three baseline 
tracker algorithms were also utilized to determine 
if detected, the trackability of the targets in 
clutter backgrounds. The trackers chosen for this 
analysis included the hot spot (HS), Bayesian 
(BS), and moving target indicator (MTI). The 
following sections describes each routine and the 
results based upon the observer experiment data. 

Auto Detection 

The auto detection routine is used in two parts: 
clutter threshold (clutr) and auto-detection (detr). 
The clutr routine, as the name suggests, samples 
surrounding clutter to determine a table of gray- 
level thresholds versus number of detections (true 
and false). Therefore, the user is allowed to 
choose a threshold for the image(s) based upon the 
desired false alarm rate using a series of images 
that calcualtes the range of thresholds vs number 
of detections. Using the selected threshold, the 
detection routine (detr) is used on every frame of 
imagery. Detections are shown on the imagery by 
colored dots, with the primary detection in red. 
The user is then prompted to enter if it is a true or 
false detection via three possible answers: target, 
clutter, or other. The results from the user are 
logged in a file. 

For this study, thresholds were selected at 
approximately 4% false alarms, consistent with 
current tracker capabilities. A center region of 
100x100 pixels was chosen to analyze as the 
region of interest (ROD. Only in cases in which 
the target was not within the center 100x100 
region that an alternate 100x100 region were 
selected to ensure the target remained throughout 
the sequences. It was impractical to process the 
entire field of view due to the diverse backgrounds 
and lack of sophisticated routine.   Using the 
selected threshold, the detection routine (detr) 
was processed over the ROI. Each pixel that 
exceeded the chosen threshold was shown by color 
on the image. The user determines if any of the 
exceedences is a true detection. Only the first 
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detection of each sequence was noted, assuming 
that once a detection was made, a tracker would 
be implemented (not continued detection routine). 
A detection percentage was calculated by the first 
correct detection frame over the total number of 
frames. For example if the target was detected on 
the first frame, that sequence was given a score of 
100% detection. If the first detection was on the 
75th frame (out of 150 possible) the score for that 
sequence was 50%. This seemed to be a fair 
assumption given that the false alarm rate was 
kept constant for every sequence. 

Given the above assumptions, the results to the 
auto-detection routine are shown if Figures 5 and 
6. The first of these figures shows the comparison 
between automatic detections and clutter level. 
Figure 4 shows the trend between clutter, track 
metric, and auto-detection. 
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Figure 5. Auto Detection vs Clutter Level 

A trend can be seen that consistent detections are 
made with the lower clutter numbers, whereas the 
higher clutter numbers (on right side of chart) 
result in sparse detections. The moving target 
sequences were not included since the clutter level 
was essentially constant due to the MTI 
processing. 

rl-158    n-13a    ri-i*a    n-156    n-13t>    n-14b    n-13c    ri-isc    r1-«c 
moving sequences 

Figure 6. Moving Target Analysis 

Though no specific trend was observed between 
the auto-detection and observers for stationary 

targets, the moving target analysis was as 
expected. There was gradual degradation in 
performance for the observers who naturally use 
movement as cues. The auto-detection which did 
not consider movement only had consistent 
detections on the closer range sequences (denoted 
with 'c' - right side of Fig 5). It was also observed 
that the higher signal to noise ratio requirement 
for the auto-detection routine was not as robust as 
the multiple cues used by the observers. A similar 
gradual degradation for observer performance was 
seen for the stationary runs with sporadic high 
detections with the auto-detection. The lack of 
detections by the detr routine was mostly caused 
by warmer clutter in the scene that essentially 
"threshed out" the target.   A solution to this 
problem might be improving signal processing 
before executing the detection routine. 

Tracker Performance 

The proposed tracking algorithms consist of three 
levels of tracking to represent low, moderate, and 
high levels of algorithm sophistication. The three 
algorithms will be referred to as the hot spot (HS), 
Bayesian (Bay), and moving target indication 
(MTI) trackers. These algorithms are listed in 
order of their sophistication level from low to high. 
The sophistication levels are relative to each other 
and are not intended to classify these algorithms 
with respect to any algorithms outside this effort. 
These tracking algorithms are available in the 
Infrared Seeker Algorithm Tool (ISAT) which was 
used to determine the performance of each 
algorithm against the image sequences [5]. The 
tracking results are presented as number of 
tracked images throughout the sequence. There 
was no attempt to assess automatic target 
acquisition algorithms; therefore, it was assumed 
that the target location, size, and shape were 
provided to the tracking algorithms. Also, fielded 
systems would likely contain algorithms with 
additional features and more specialization than 
those available in ISAT. For example, ISAT does 
not provide track gate (TG) optimization 
algorithms, so the TGs were optimized for each 
sequence by user intervention. Other tracking 
parameters were optimized by the user to 
maximize performance. An overview of tracker 
implementation and results follow. Detailed 
descriptions of all the algorithms may be found in 
Reference 4. 
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Hot Spot Tracker MTI 

The track gate of the HS tracker was centered on 
the target and its dimensions were held constant 
throughout the image sequence. The maximum 
per-frame motion encountered in the sequence 
determined the size of the track gate. The 
movements of both the captive-carry platform and 
the target caused this motion. If the target and 
image motion combination was less than the 
smaller dimension of the target, the track gate 
could be set to the size of the target or, in some 
cases, even smaller. If the target and image 
motion combination was larger than the target in 
either direction, the track gate had to be larger 
than the target to prevent the target from moving 
outside of the track gate in the following frame. 
The HS tracker updated the location of the center 
of the track gate to the location of the highest 
intensity pixel inside the initial track gate 
location. In all the evaluations, the track gate size 
and location were optimized for the best tracker 
performance via user inputs. 

Baysian Tracker 

The Bay tracker classifies pixels based on their 
similarity to statistical models for the target and 
background. The TG of the Bay tracker has two 
components, the target pixel gate (TPG) and the 
background pixel gate (BPG). To initialize the 
tracker, the TPG was centered on the target and 
matched to the size of the target. The BPG was 
also centered on the target but was larger than 
the size of the TPG. The actual size of the BPG 
was based on the optimal performance for a given 
image sequence. The BPG excluded the area 
designated by the TPG. The target statistical 
model was formed based on the pixels inside the 
TPG. The background model used only pixels 
inside the BPG. The mean, standard deviation, 
and correlation coefficient were calculated for the 
TPG and BPG areas for the first frame to 
determine the bivariate normal distributions for 
the target and background pixels. On the second 
frame, each pixel within the TG was classified 
according to its probability of being either a 
background pixel or a target pixel based on Bayes' 
law. The TG was then centered on the new target 
pixels and the statistics were updated. 
Calculation of the correlation coefficient required 
the user to specify the offsets between the current 
pixel and its statistical pair. In all cases the size 
and location of the TPG and BPG were optimized 
as well as the statistical pair offsets. 

MTI algorithms attempt to enhance the target- 
background contrast by first aligning, and then 
subtracting, two frames of an image sequence. 
Since the two images are aligned with respect to 
stationary background clutter features, the clutter 
is greatly reduced by the subtraction. Objects that 
are moving relative to the background will not 
coincide after the image alignment and tend to be 
reduced less. Theoretically, the only pixels 
remaining after the subtraction are those which 
fall on moving targets.The MTI tracker was not as 
sensitive to the TG size as the previous two 
tracker methods. The TG of the MTI tracker was 
centered on the target and sized to be much larger 
than the target. The location of the TG was 
updated on each frame by centering it on the 
maximum intensity pixel within the TG. Because 
the targets in the observer data moved slowly, 
frames were skipped to increase the apparent per- 
frame target velocity. For example, frames 1 and 3 
may have been registered pairs as opposed to 
frames 1 and 2. Using this option in the current 
implementation in ISAT, frames 1 and 3 are 
paired then frames 3 and 5 are paired and so on. 
Prom a tracking standpoint, this caused the data 
rate to be lower than the frame rate. Regardless, 
successful tracks at lower data rates should also 
be successful at higher rates. 

Tracker Results 

Twenty-two out of the twenty-four analyzed 
targets were tracked throughout the entire 
sequence by at least one tracker (Figure 7). Only 
one sequence was not tracked by any method. The 
MTI tracker was successful in every sequence that 
contained a moving target. The HS tracker was 
successful in 22 out of the 24 image sequences. 
The track gate of the HS tracker was sized as 
small as possible based on the amount of per- 
frame image motion in the sequence. Because the 
track gate of the HS tracker was small, it helped 
prevent opportunities for the tracker to be 
confused by clutter. The Bay tracker performance 
was worse than the HS tracker. However, its 
performance was degraded due to excessive image 
motion and the lack of gimbal or IMU data. Also, 
dynamic gate management algorithms would 
increase the performance of the Bay tracker.lt is 
not surprising that if the target location is 
correctly designated and the gate sizes are 
optimized for each sequence, even nominal 
trackers such as thes used in this study perform 
very well. 
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Figure 7. Tracker Results 

The track metric was also compared with the 
tracker results (Figure 8). There appeared to be 
no correlation between the two. This result is 
thought to be attributed to the optimization that 
occurred for the tracker for each sequence. 
Future efforts will include running the trackers 
for every sequence without optimization using 
some default mode. Comparisons will be made 
then as to if the sequences with lower track 
numbers required the most optimization to 
achieve optimal results. 
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Figure 8. Track Metric vs Tracker Performance 

SUMMARY 

This paper has presented the most recent 
activities in a continuing effort to improve the 
capability of IR seeker performance models. This 
thrust is directed toward more accurately 
modeling the IR imaging seeker capabilities for 
resolved, low intensity targets embedded in 
complex clutter. Both MITL and non-MITL 
capabilities are being considered and the 
progress of this activitiy is coordinated with other 
efforts invovled in reducing this complex modeling 
issue into a few parameters. 

Several very diverse types of analysis were 
conducted on the observer experiment imagery. 
Background analysis was made observing trends 
with the Model A clutter and the GLCM track 
metric. The residual clutter parameters derived 
from Model A did show a trend compared with 
observer performance as higher clutter produced 
decreased detection probability as well as showed 
less scatter than with lower clutter levels. A 
noticable trend was not expected dut to the 
metric's lack of target structure consideration. 
Future studies will investigate Model A's 
applicability in performance model for extended 
sources (e.g., ground targets). Though a trend 
could be seen with the track metric and clutter 
level, it was disappointing that no trend could be 
shown with the observer detction and track 
metric. Modifications are planned and future 
comparisons will be made with non-optimized 
routines and possibly more observer detection 
data. 

The auto-detection routine did not demonstrate a 
state-of-the-art sophisticated algorithm, but 
showed the importance of SNR on detection 
capability when MIL is not used. In general, MIL 
detection was better than auto-detection as 
expected since the routine does not emmulate the 
many signal processing roles of the human brain. 
Tracker algorithms, however, prove very robust if 
provided target information. The real issue 
appears to be in search and accurate detection 
also in plans for near term investigation. 

The results presented here are but a step toward 
the complete understanding of this complex 
modeling challenge. Similar efforts will continue 
under a variety of AMCOM sponsorhips to 
investigate and determine meaningful background 
clutter metrics and formulations of target 
signatures that are conducive to determine IR 
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seeker performance. Additional analytical work 
is planned and experimental efforts will also 
provide additional data from structured ground 
and captive flight tests. 
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ABSTRACT 

In recent years, a number of critical advancements have 
been made in infrared detector material preparation, 
detector fabrication technology, and readout integrated 
circuit (ROIC), as well as cryogenic technology. These 
combined technologies allow production of higher 
resolution IR focal plane array (FPA) of superior quality, 
such as 512x512, 640x480, or larger pixel format FPA 
devices of either HgCdTe, InSb, or QWIP. In general, 
high resolution FPA devices are needed for infrared 
imaging cameras that provide long-range detection of 
small objects, particularly in military applications. 

In this study, the performance of an airborne infrared 
camera with large pixel format FPA forward looking IR 
(FLIR) is predicted for various optical configurations. For 
airborne imaging, the space constraint for optics and 
electronics becomes crucial, as does the limited optical 
aperture size. The first constraint will affect the focal 
length of the optics, hence the instantaneous field-of-view 
(IFOV); the latter will affect the F-number of the optics, 
hence the sensitivity of the system. Both constraints will 
critically affect overall infrared camera performance. 
Compromise is essential to achieve the best performance 
of an airborne FLIR with a given line-of-sight instability. 
Through this study, we exercised the optimization process 
for long-range ground target detection and conducted a 
trade study between Mid-wave IR (MWIR) and Long- 
wave IR (LWIR) FLIRs. 

INTRODUCTION 

pilots have noticed that they can recognize targets beyond 
the Nyquist based predictions. Users have typically 
overcome the shortfalls of FLIR92 by extrapolation and 
other such "unofficial" techniques to make the basic 
model work, i.e., to be representative of actual FLIR 
range performance0'. 

NVTherm(2> is a recently released FLIR modeling tool by 
NVESD that replaces FLER92. This new model is more 
directly applicable to typically undersampled staring 
arrays and considers performance of FLIRs past their 
Nyquist frequency. In addition, the combination of 
higher sensitivities of staring arrays and the contrast 
limitations of the human eye has recently become a 
critical limitation of staring array imaging systems that 
was incorporated in NVTherm. 

A beta version of NVTherm was used for system design 
trade study and performance prediction of large format 
FLIR in support of on-going next generation ground 
target pod development at Northrop Grumman, Defensive 
Systems Division at Rolling Meadows, Illinois. The 
MODTRAN® AFRL/GL (ONTAR Corp.) atmospheric 
transmission model and ACQUIRE algorithm were also 
used in support of performance prediction. (ACQUIRE 
Range Performance Model for Target Acquisition Systems 
is a NVESD software program, normally used with 
FLIR92). An IR sensor radiometric model was developed 
for various types of IR imaging systems. This model, 
verified with numerous sensor system characterization 
test results, was also used to increase understanding of 
advanced imaging systems and, in part, to support the 
verification of NVTherm performance prediction. 

The digital modeling tool FLIR92 by NVESD has been 
the standard means to predict the performance of FLIR 
cameras; however, this standard has some shortfalls when 
applied to staring arrays, because its predictions are 
generally pessimistic for staring array sensors. Very often 

SYSTEM F/# 

Many parameters affect the range performance of an IR 
imaging system. Each parameter has a significant impact 
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on the FLIR performance. Depending on its application, 
the system needs to be optimized for its specific 
applications, such as hot or cold weather background at 
long or close range. In general, low F/# systems provide 
excellent sensitivity and are useful as accurate 
radiometers for mapping temperature differences of an 
object or geographic surface. Though the sensitivity of 
the incorporated detector device remains constant, the 
system F/# affects the system sensitivity and resolution. 
For low F/# systems, instantaneous field of view (IFOV) 
is relatively large and pixels are exposed to the large area 
background corresponding to the IFOV. That increases 
the scene radiance reaching the FPA pixels, and provides 
a relatively large signal-to-noise ratio (SNR) for small 
scene temperature changes. In spite of the excellent 
system sensitivity, these systems have shortfalls for long- 
range applications, mainly because of their resolution 
limitation. In the other extreme, high F/# systems provide 
excellent resolution, a great advantage for long-range 
imaging. However, such high F/# systems often drive the 
system resolution into the optics diffraction limited 
resolution and require long integration time to achieve 
SNR. 

Assuming 100 % cold shield efficiency, a series of 
Minimum Resolvable Temperature (MRT) values at 300 
K background temperature were generated with variable 
optics F/# using the NVTherm model. In the model, the 
integration time was set to maintain 50% storage 
capacitor well fill in order to compare systems of 
different F/#. The results are compared in Fig. 1. It is 
noticed that as F/# increases, MRT curves shift to higher 
frequency, thus making the system more adequate for 
resolving small targets at long distance. 

In spite of great spatial resolution, there are several 
factors to limit the performance of such high optics F/# 
systems: diffraction limited resolution, sensitivity due to 
the reduced optical power for a pixel, and susceptibility to 
line-of-sight jitter. The optical aperture size often causes 
optics diffraction limited resolution, especially where 
high resolution is required. Usually aperture size in an 
airborne FLIR is limited by space constraint, due to 
consideration of air drag at supersonic speed. Therefore, 
with a given maximum aperture size, system optimization 
is needed to achieve the required performance. 

Another consideration is the increase in integration time 
to obtain reasonable SNR. 50% well fill integration time 
increases linearly with system F/#. This is because of 
reduced FPA FOV, or equally reduced pixel IFOV: a 
reduced amount of optical power is captured by a pixel. 
The maximum integration time of a real time imaging 
system cannot be longer than the frame time (i.e. 33 msec 

for 30 Hz or 16 msec for 60 Hz frame rate) and this sets 
the maximum integration time. NVTherm incorporates 
the effect of integration time. Fig. 2 shows MRT 
improves with increasing integration time (or increasing 
scan efficiency). 

§xfcal Frequency (arb) 

Fig. 1. MRT values generated with NVTherm for various 
optics F/#. 
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Fig. 2. Scan efficiency dependence on MRT. Note that 
MRT improves with integration time. 

Beside NVTherm, where MRT and modulation transfer 
function (MTF) are the main objectives, the IR camera 
radiometric model provides an excellent tool for 
laboratory system characterization. The radiometric 
model was developed to support lab testing and predict 
lab test results. Due to the lack of subsystem component 
parameters from vendors or manufacturers, very often the 
specifications of each component are not useful for or are 
irrelevant to modeling of system performance. Therefore 
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instead of modeling with subsystem parameters, the final 
system considered as an unit-under-test is tested 
radiometrically and the result is compared with model 
prediction. If there are any discrepancies between the 
model prediction and the test result, the assumed optics, 
electronics, and detector parameters can be extracted by 
fitting the model to the test result. These parameters are 
then used to compare with manufacturer's specifications. 
This model has proven to be successful in predicting 
various test results and is being used to support a number 
of in-house EO/IR programs. Details of this model will 
be presented in a forthcoming article. 

reduced by the solid angle of a pixel, or IFOV, hence 
decreasing the responsivity at the background scene 
temperature. It was shown previously that as integration 
time is adjusted for 50% storage capacitor well fill, total 
noise should remain the same. As a result, noise 
equivalent temperature difference (NETD) is found to 
increase with F/#. NETD is a temporal noise component, 
which critically affects system MRT of high F/# systems 
in all the spatial frequencies. 

Based on the radiometric model which has been validated 
with test results on a number of F/# systems, temporal 
noise was calculated for the extended F/# range under the 
assumption of the same sensitivity FPA with a 100% 
efficient cold shield matched to the optics F/#. In Fig. 3, 
the calculated temporal noise components were 
categorized into a photon noise component and a rest-of- 
noise component called system noise. The system noise 
consists of FPA multiplexer, electronics, detector dark 
current, and thermal noise due to optics emission. Notice 
that the total noise remains the same over the F/# range 
for 50% well fill integration time. As F/# increases, 
photon noise decreases and system noise increases. This 
observation is explained by the fact that pixel irradiance 
is reduced with F/#, thus resulting in reduced background 
photon noise. Long integration time mainly leads to 
increased dark current noise, which is time dependent. 
Therefore, the longer the integration time, the greater the 
dark current noise contribution. 

Diffraction limited 

50% wall fill Integration 
300 K background 

6 8 

Fig. 4. Responsivity versus System F/#. Because of the 
reduced pixel irradiance of high F/# system, system 
responsivity decreases with F/# and, as a result, system 
NEDT increases. 
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Fig. 3. BR. camera model prediction of background noise 
limited operation. Background photon noise gradually 
decreases with increase of F/# and becomes comparable 
with system noise at higher F/#. The total noise of the 
system remains the same over system F/#. 

System responsivity at 300 K background temperature 
was calculated with system F/# as a variable, and the 
results are shown in Fig. 4.  Irradiance at the aperture is 

MODTRAN was used to calculate the average 
atmospheric transmission. The selected atmosphere was 
the mid latitude summer using the standard model options 
with the rural aerosol model at 5 km visibility. The 
aerosols, which affect meteorological visibility, are 
contained in the boundary layer of 0 to 2km altitude in 
MODTRAN model. The atmosphere is murkiest at 
ground level and gets somewhat clearer with increasing 
altitude, and when mixing with higher level air up to the 
inversion layer, which is at the top of the boundary layer. 
At an altitude with a given slant angle, the transmission 
varies with altitude. For example, at 30 degree slant 
angle, the line of sight travels only 4 km within the 
boundary layer, mostly affecting the total transmission 
along the path to the FLIR position. For this reason, the 
transmission model cannot be simplified with a single 
transmission coefficient, that could cause underestimated 
or overestimated transmission assumption. 
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Still, visibility is not a strong factor for air-to-ground 
viewing at these angles. It should be noted that on 
semilog scales the transmission is not an exact Beer's law 
(straight line) and its use creates significant errors at the 
longer ranges. It was found that a very good fit (within 
1%) over a large range is obtained using a 6-parameter 
exponential based on the Weibull distribution. Total 
transmission from a target was computed by MODTRAN 
along the slant range from 0.5 km with 0.5 km steps at a 
given slant angle, then the parameters were obtained by 
fitting the data. Fig. 5 shows the results. This procedure 
was repeated for all the possible slant angles from 5 to 90 
degTee for the calculation of detection range. 

Boundary layer Calculated by MODTRAN 
wttn 20 * slant anoi t 
MLS  Rural 5 km via 

Preaeeumed ranot 

10 12 

The impact of LOS jitter to FLIR performance is 
illustrated in Fig. 6. In this figure, for the given F/4.54 
optics with the same IFOV, the degraded FLIR MRT with 
varying jitter was calculated, then used to extract the 
recognition range with fixed target size and atmospheric 
conditions. The recognition range decreases gradually 
beyond the point where jitter is larger than the IFOV of 
the FLIR. Well-controlled jitter of less than 50% of IFOV 
hardly seems to affect the system performance. 

JltteMIFOV 

Slant Range (art-) 

Fig. 6. Degraded FLIR performance due to LOS jitter. 
Note that when jitter/IFOV is unity, the recognition range 
is reduced by 15%. Beyond that, the range decreases 
rapidly. 

Fig 5. Comparison of MODTRAN calculation of 
atmospheric transmission along slant range and a simple 
Beer's model. 

LINE-OF-SIGHT JITTER 

The line-of-sight (LOS) jitter due to airbone platform 
vibration is the most critical factor affecting airborn 
imaging system design. The effect of jitter is image blur 
during the integration, which consequently impacts the 
recognition of small targets viewed on a display. 
Typically, jitter bandwidth is higher than integration time 
for high F/# systems, and details at high spatial frequncy 
become blurred. As illustrated previously for longer 
range recognition capability, the system magnification 
should be increased as much as possible. That results in 
smaller FOV or a higher F/# optics system. Unlike 
ground systems, LOS stability is greatly affected by the 
ariborne platform movment and is usually limited by the 
capability of the stabilization system. For high F/# optics 
or small FOV, the effect of jitter becomes more critical 
and results in reduced recognition range. 
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Fig. 7. FLIR recognition range is affected critically by 
LOS jitter, especially for long range, high F/# FLIR 
systems. 

High F/# optics systems result in small IFOV, increasing 
suceptability to line-of-sight jitter and impacting system 
performance critically. With NVTherm-generated MRT 
for various F/# systems, the effect of jitter was introduced 
to calculate a target recognition range under the same 
conditions. The result is shown in Fig. 7, where the jitter 
impacts high F/# systems more critically than low F/# 
systems.  Athough high F/# systems seem promising for 
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long-range  target  recognition,   the  presence  of jitter 
severely degrades the system performance. 

TARGET MODEL 

Typically, armored ground vehicles and bunkers are 
considered as ground targets for airborne FLIRs. When 
ground targets are viewed from altitude with a slant angle, 
the projected target size is larger than the size seen at 
normal viewing angle. 

In order to estimate the target size projected onto the line- 
of-sight, the target was assumed to be a block having the 
length (/), width (w) and height (h) dimensions of the 
target. Then the specified target size was modified by the 
cosine effects of a non-normal viewing angle and 
converted to an effective target area. The target is seen as 
a side view or front view with some increase in height 
due to the viewing aspect angle. 

The following equations were used to compute the 
projected height of target side and front: 

Projected height (side): 
Hs(6) = h-cos(6)i-w-sin(8) 

Projected height (front): 
Hf(8) =h-cos(9) + lsin(6) 

parameters, the target parameters have a significant 
impact on the range performance of the given IR 
system'3'. 
The path by which the range performance prediction was 
determined is briefly reiterated again. As seen earlier, 
both atmospheric transmission and apparent target size 
are dependent on the slant angle of the LOS from the 
FLIR. For this reason, an approximated transmission by 
Beer's law may result in underestimated or overestimated 
range and should not be used unless the range is roughly 
known. Similarly, for the apparent target size, the 
variation of the target size is nearly 20% between the size 
seen at normal viewing angle and the maximum size at a 
slant angle. This translates to an error of 20% in the 
range prediction. Therefore, recognition range is 
dependent on slant angle and the FLIR performance 
prediction should be carried out in terms of slant angle. 
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where 0 is the slant angle of the line-of-sight from the 
FLIR to the target. 

Using the calculated projected heights of target side and 
front, the effective target size of a typical ground vehicle 
is illustrated in Fig. 8. It is noticed that the effective 
target size initially increases with slant angle, reaching its 
peak at 50 degrees for the target side view (>20% net 
increase) and at 70 degrees for the target front view 
(>30% net increase). This observation illustrates that at 
higher altitude, larger effective target size leads to longer 
recognition range, or higher probability of recognition at 
the same slant range. 

RANGE PREDICTION 

Many environmental parameters that affect the range and 
performance prediction of an airborne IR imaging system. 
Each parameter has a significant impact on the final range 
performance.        In    addition   to    the    environmental 

Fig. 8. Effective target size of a typical ground vehicle at 
slant angles from 5 degrees to 90 degrees. 

The predicted range can be calculated by solving the 
apparent target temperature and MRT curves. The target 
apparent temperature variation along slant range is 
obtained by multiplying a given target temperature 
difference by the transmission. NVTherm-generated MRT 
is modified with a specified LOS jitter. The spatial 
frequency of the MRT curve is then converted into range 
with effective target size and Johnson detection criteria, 
typically 1 cycle for detection, 3 cycles for recognition 
and 6 cycles for identification are assumed for 50% 
probability. 

Both the calculated transmission data at a given slant 
angle and the resulting MRT data are plotted in Fig. 9 to 
illustrate the procedure. The recognition range can be 
determined easily by solving these two interpolated 
curves. This procedure is repeated at the various slant 
angles to construct the boundary of the required range as 
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shown in Fig. 10. It is noticed that the predicted slant 
range varies with altitude. Relatively short recognition 
range is obtained at small slant angles, and the range 
increases slighdy with the angle. This is because of the 
combination of improved atmospheric transmission and 
increased apparent target size at the slant angle. 

Fig. 9. Recognition range prediction by solving the 
apparent target temperature and MRT curves. 

background temperature, and target characteristics. 
Depending on specific system application, IR imaging 
systems operating in either LWTR or MWTR have their 
own advantages. 

For an airborne FLIR, long-range target imaging 
capability and target recognition/identification is the most 
important requirement. Most importantly, the system 
should be capable of providing high resolution imagery. 
However, the system resolution is often limited by staring 
FPA detector resolution. In order to overcome the 
detector resolution, it is a common practice to push the 
system resolution into the optics diffraction limited 
resolution. In this case, the aperture size becomes a 
critical parameter to determine the system resolution. 
However, for an airborne FLIR there is a physical 
limitation in the aperture size that is unlikely in ground 
based systems. In Fig. 11, both detector and optics 
diffraction limited resolutions are illustrated (4). For this 
particular MWTR system, diffraction limited resolution 
occurs at F/2.7: beyond that, the diffraction resolution 
becomes a limiting factor. It is shown that LWTR optics 
diffraction resolution is twice as large as that of MWTR 
for the same aperture size. In order to be comparable 
with MWTR diffraction resolution, the LWTR FLIR 
aperture size has to be twice the size of MWTR FLIR. 
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Fig. 10. Predicted recognition range of MWIR and LWTR 
of the same aperture size. Both FLIR are diffraction 
limited. 
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MWIR VS. LWIR FOR AIRBORNE FLIR 

Since the introduction of IR imaging systems, there have 
been many studies and arguments regarding MWTR as a 
better imaging band than LWTR or vice versa. There are 
a number of factors involved in FLIR performance 
prediction and analysis: atmospheric transmission, FPA 
spectral response, system sensitivity, system resolution, 

Fig. 11. Comparison of detector resolution and optics 
diffraction resolution of MWTR. to LWTR optics 
diffraction resolution. 

Although more radiance is available from terrestrial 
background in LWTR than in MWIR, radiance difference 
due to the temperature difference is higher in MWTR than 
in LWTR, providing better scene contrast. Furthermore, 
such   large   available   radiance   seems   to   be   often 
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detrimental to FPA interface to large format ROIC. As 
FPA format size grows, the integration capacitor tends to 
shrink because of reduced ROIC cell size. This would be 
a great concern for LWIR FPA development toward a 
large format unless the system spectral bandpass is not 
narrowed. 

Atmospheric transmission depends on the amount of 
water vapor, aerosols, and molecules present in the air. 
Aerosol affects MWIR transmission; water vapor affects 
LWIR more than MWTR. Typically, in good visibility 
and at long meteorological ranges, MWTR transmission is 
often better. Furthermore, by looking down from high 
altitude, the transmission is effected in the boundary layer 
near the ground. Beyond the boundary layer, the MWTR 
transmission is as good as or sometimes better than that of 
LWIR. 

SUMMARY 

Using NVTherm and the Acquire algorithm, airborne 
FLIR performance was predicted. In order to achieve 
long-range target imaging, it is desirable to design a 
system that provides high resolution and magnification. 
High resolution, obtained by high F/# optics systems, 
results in diffraction limited resolution. Some degree of 
diffraction limited resolution is beneficial to improve the 
system resolution. However with higher system F/#, the 
system resolution tends to become limited by detector 
resolution, and the system responsivity is reduced rapidly 
as well because of the reduced IFOV. Although the 
system resolution is improved with high F/#, the range 
performance is critically affected by LOS jitter. It was 
found that jitter equal to the IFOV results in 10% 
reduction in recognition range. 

Unlike ground-based system performance analyses, the 
variation of the atmospheric transmission and the 
apparent target size should be considered. The apparent 
target size was shown to be slightly larger at a slant angle, 
and increases with the viewing slant angle or higher 
altitude, resulting in longer predicted recognition ranges. 
It was also shown that the atmospheric transmission along 
a slant angle should not be assumed as a fixed average 
transmission because of altitude dependent transmission. 

Finally, spectral band selection between MWTR and 
LWTR was discussed in terms of system resolution and 
atmospheric transmission. Under optics diffraction 
limited resolution conditions, the system resolution 
depends on the optics aperture size and FR band 
wavelength. With a given aperture size, MWTR provides 

twice as much resolution than LWTR. It was also shown 
that the atmospheric transmission of both MWTR and 
LWIR along a slant range is slighdy affected by 
meteorological visibility within the boundary layer. 

REFERENCES 

[1] Wittenstein, W., "Thermal range mode TRM3". SPIE 
Proceedings Vol. 3436 "Infrared Technology and 
Applications XXTV." 1998. 

[2] Vollmerhausen, R., Driggers, R.G., "NVTherm: Next 
Generation Night Vision Thermal Model", Proceedings 
for 1999 Meetings of the IRIS Specialty Groups on 
Passive Sensors, Vol 1, pl21 (1999) 

[3] Hoist, G. C, "Electro-Optical Imaging System 
Performance". JCD Publishing and SPEE Optical 
Engineering Press, p296 (1995) 

[4] Hoist, G. C., Photonic Spectra, pl44, Jan (1999) 

ACKNOWLEDGEMENT 

The authors are indebted to R. Vollmerhausen of Army 
NVESD for much of the contribution to this work. 

196 



Thermal Modelling of Target and Background 
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ABSTRACT 
Mathematical models and an image manipulation system 
have been developed for use for camouflage evaluation, 
thus reducing the need for costly field trials. The aim of the 
work has been to present an image of a camouflaged object 
in a realistic terrain background for any given weather con- 
dition. The work has been pursued along two directions: 

1) Modelling of buildings and bare ground based on ex- 
tensive measurements of all influencing parameters like air 
temperature and humidity, ground temperature, wind 
speed, in- and out-going radiation, sun position, etc. Other 
factors included in the modelling were heat convection and 
material properties. The modelling comprised even cam- 
ouflage nets over the buildings. The results from the mod- 
els - apparent temperatures - were verified by radiometric 
measurements. 

2) Inserting images of real objects into images of real 
backgrounds, thus make it possible to adjust the object/ 
background contrast by camouflage measures like screen- 
ing of hot parts, using camouflage nets and even IR smoke. 
The smokes were represented by smoke grenades modelled 
in a dynamic way showing the diffusion of the smoke and 
the influence of the wind. 

Work is in progress to model background vegetation of var- 
ious types, to model some military objects, and to fuse the 
results into a common image. The modelling will be com- 
bined with measurements of all relevant parameters and 
with recording of IR imagery at two stations over a year in 
Norway. 

INTRODUCTION 

In the mid 70-ties we worked on camouflaging a Norwe- 
gian NIKE site both in the visual and thermal spectral band. 
During this work we started modelling the thermal signa- 
ture of the various buildings at the site. The work was later 
continued with modelling of characteristic Norwegian 
background types and relevant camouflage measures. The 
result of this work was a simple, but very effective model 
for predicting surface temperatures. 

In our work on studying camouflage effectiveness, field 
trials was extensively used. In order to reduce costs, an ef- 

fort to use image manipulation as a substitute, or rather a 
supplement to field trials, was started. This work was done 
in cooperation with the pattern recognition group at our es- 
tablishment, and resulted in a system that made it possible 
to vary contrasts and introduce various camouflage mea- 
sures in both visual and thermal images. 

The work on mathematical modelling and synthetic images 
are continued as we are lacking good mathematical models 
for vegetation like trees and bushes and for military ve- 
hicles. 

THERMAL MODELLING 

Concrete wall 

The simplest object to model is a concrete wall, and the 
principles used here is the foundation for all further model- 
ling. The model is described in reference [1] and it handles 
both the heat exchange with the environment and the heat 
flow through the wall (Figure 1). 

Absorbed direct 
solar radiation 

Absorbed scattered 
radiation 

Absorbed heat 
radiation from 
sky and terrain 

Emitted heat 
radiation 

Heat convection 

Heat conduction 

a. cp. x . cosu . cosv 

E. 

-e^o.T/ 

h • Oo-T,) 

Figure 1  Thermal processes 

where the parameters are: 
a wall's absorptance of solar radiation 
cp solar constant 
T atmospheric transmittance 
u, v      sun elevation and azimuth angles respectively 
E0, Ei   emissivity of atmosphere and wall respectively 
o Stefan Boltzmann's constant 
T0, Ti air and wall surface temperatures respectively 
h coefficient of convective heat transfer (function of 

wind speed) 
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The modelling of the heat conduction through the wall is 
based on the assumption that the extension of the wall is 
much greater than its thickness, thus the problem is reduced 
to calculation of a one dimensional heat flow. 

Consider a row of unit area slabs of thickness Ax through 
the wall with centres 1,2,3 etc as shown i figure 2. At the 
wall surfaces there is only half a slab, so that the centre lies 
on the surface. 

Inner 
surface 

11 

Outer 
surface 

Figure 2 The slab row of the wall 

At a given moment, t, the temperature at the various slab 
centres are denoted Tj, T2, T3 etc and after a small time in- 
terval At: T'i, T'2, T*3 etc. The heat change in one of the 
inner slabs, for instance slab 2, during the time interval At 
will be 

p • c • Ax • (T2 - T2 (1) 

where Q is the mass density of the wall and c is the wall's 
specific heat capacity. The heat exchange is a function of 
the thermal conductivity of the wall, X, and of the tempera- 
tures of the neighbouring slabs. As a first approximation 
the two neighbouring slabs are considered, and the heat 
balance of slab 2 is obtained by 

p • c • Ax • (T2- T2) = 

At • [(T, - T2) + (T3 - T2)] • XIAx     (2) 

For the two outer slabs the external heat exchange with the 
surroundings has to be added (figure 1), and the equation 
for slab 1 then becomes 

v2p • c • AX • (r, - r,) = 
At -[(T2- Tx) • XjAx 

+ a • <p • x • cos u • cos v + E, 
+ 1/2(e0 + 1) •<=,   o- r0-e, -a-Tx 

+ h-(T0- TJ] (3) 

For the inner wall surface there will be a similar equation, 
but without the terms referring to solar radiation (third line 
of equation 3. 

Input parameters in addition to material constants are: geo- 
graphical coordinates (for calculating sun position), air 
temperatures and wind speed. As start condition for the 
calculations is used a very rude estimate of wall surface 
temperature just before sunrise when the heat balance is in 
equilibrium. 

After several runs it has been found that time intervals of 
At = 30 sec between each calculation are small enough to 
give reasonable results for a concrete wall 30 cm thick and 
divided into 11 slabs as shown i figure 2. Further, it has 
been shown that increasing the number of slabs will not in- 
crease the accuracy of the results significantly. 

Composite walls 

Most walls are, however, more complicated than the simple 
concrete wall. The normal structure of a wall is two outer 
hard, weather resistant surfaces with an insulation material 
in the middle. These different wall layers have their own 
specific material constants, thus making the modelling a bit 
more complicated. 

In principle the modelling of a composite wall is the same 
as for the simple concrete wall. Each layer in the wall is 
divided int 11 slabs, and the heat transfer for the centres sit- 
uated on the adjoining surfaces of two neigbouring layers 
are calculated as before - described in reference [1]. 

In figure 3 are given examples of two types of walls: The 
wall of a wooden building (wooden outer surfaces with a 
layer of insulation in between) and the wall of a metal van 
(thin metal plates with a hard type of insulation). The mod- 
elling of the van wall is simplified by assuming that the 
thermal conductivity in thin metal plates is high enough to 
give a practically no heat gradient through the plates. 

Calculation of the surface temperature of two such walls 
has been performed in parallel to measuring the surface 

Ci,ki,Qi 

Wooden wall with insulation: 

c2, k2, Q2 C3. k3, Pa 
0) 

II £ m 

Thin metal plates with insulation: 

c2, k2, e2 

T1 

Ax2 Ax3 AX1 

Figure 3 Slab rows of composite walls 
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temperatures. Some results are presented in figure 4. The 
measuring site was in Southern Norway and the date May 
6. The wall orientations is shown in the figure, and the 
walls were all olive green coloured. Inner temperature of 
the buildings were 20°C and the wind velocity about 2-3 
m/s. The measurements were undertaken with a Barnes 
PRT-5 radiometer. 
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Figure 4 Surface temperatures of composite walls 

As can be seen from the figure, most of the differences be- 
tween measured and calculated temperatures for the com- 

posite walls lies well in between ±5°. The results also 
clearly reflect how the surface temperatures are dependent 
of wall orientations. 

Net camouflaged building 

Applying a camouflage nets to a building as shown i figure 
5, gives two obvious important effects on the apparent tem- 
perature measured with a radiometer: 

•    When viewed from outside, the measured radiation 
from the camouflaged object is a mixture of radiation 

^r -^ 

S 
/ 
/ \ 

\ 
\ 

Figure 5 Net camouflaged building and radiometer 

from the net itself and radiation from the wall under- 
neath as seen through the openings in the net. 

• The sun heating radiation of the wall is reduced to the 
amount of radiation going through the openings in the 
camouflage net. 

As a radiometer receives radiation from both the net and the 
wall through the holes in the net, the overall temperature 
of the camouflaged object can be calculated from the sim- 
plified relationship 

r - / • n + (i - f) • n (4) 

where f is the fraction covered by the net, and Tw and Tn 

are the surface temperatures of the wall and net respective- 

iy- 

When calculating the wall temperature, the radiation ex- 
change with the camouflage net has to be considered. And 
the heat exchange with the environment has to be modified 
due to the geometry formed by the net. This means that 
most lines in equation 3 have to be modified and a few new 
lines added as described in reference [2]. 

The camouflage net has a complicated structure which is 
not straightforward to model. However, the same model as 
used for walls are found applicable when taking into ac- 
count the special geometry of the net. Measurements has 
shown a nearly instantaneous temperature adjustment to 
sunshine, indicating the heat transfer in the net material can 
be approximated to a steady-state problem. 

The most complicated phenomenon to model is the heat 
convection (figure 1) which has been handled in detail in 
reference [2]. The coefficient of convective heat transfer, 
h, is a function of several parameters of which the typical 
size of "net leaves", /, and wind velocity, w, are the man- 
ageable parameters. Assuming turbulent forced air flow 
around the net leaves, the coefficient of convective heat 
transfer becomes 

h - 6.5 tv°-8 

}02 (5) 

The camouflage net has an additional effect in that the wind 
velocity at the wall underneath the net is becoming re- 
duced. Measurements have shown that it is reduced to a 
fraction 0.4-0.6 when the wind velocity outside the net is 
3-5 m/s. 
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The model has been applied to a construction like that in 
figure 5, and radiometric measurements have been under- 
taken on three different days. The results presented in fig- 
ure 6 show that there is a good correlation between calcu- 
lated and measured temperatures. On each day the three 
types of walls presented earlier, were included. The devi- 
ations between calculated and measured temperatures are 
typically less than 5°C. 
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Figure 6 Surface temperatures 
of net camouflaged walls 

Bare ground 

The model can as well be applied to horizontal surfaces as 
to vertical walls, and it has been modified for bare ground 
- reference [3]. A sand ground can have layers with differ- 
ent thermal properties due to different water content. And 
there can be different layers of soil quality. In principle the 
calculations are quite similar to that of a composite wall. 
The model has, however, been extended to take into ac- 
count evaporation of water: the cooling effect and chang- 
ing of the water content of the soil. 

The largest difference between wall and ground modelling 
is the great depth of the ground compared to wall thickness 
for calculation of heat conduction. The depth has to be in 
the order of metres in order to obtain a constant ground 
temperature over the period the calculations take place. An 
example of calculated ground profiles are presented in fig- 
ure 7. 

The figure depicts some results over a period of 20 days for 
a rock ground. Typically is the raising temperature with the 
increasing better weather. The most interesting is, howev- 
er, how well the model manages the diurnal changes. 
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Figure 7 Rock temperature profiles 

As starting parameters for the calculations was used mea- 
sured rock temperatures from the first day as shown in the 
figure. For the further calculations it was assumed a 
constant temperature at a depth of 3 m. The environmental 
parameters were measured during the whole period, and 
they were used as input in the model. 

Surface temperatures of other types of bare ground (sand 
and peat) has also been calculated. The deviation between 
calculated and measured temperatures are, as expected, 
greatest for peat in that only 57% of the deviations were 
less than 2°C and 28% between 2 and 3°C. For sand the 
deviations were 80 and 14% respectively, while for rock 
(figure 7) the numbers were 94 and 5%. 

SYNTHETIC IMAGES 

Inserting objects into backgrounds 

Synthetic images are made up by inserting images of real 
objects into images of real backgrounds. The work on syn- 
thetic images are described in reference [4]. The founda- 
tion is a database of digitized images of different objects 
and of representative backgrounds. Practically all image 
handling has been performed on a Topaz working station 
from Primagraphics Ltd. 

The strength of the Topaz system is that it handles different 
image planes as bit-maps. Thus there can be a visual and 
thermal background plane, a visual and thermal object 
plane and a form plane. The latter is necessary in order to 
define the form of the object. 

In figure 8 is illustrated how a visual image of a military ve- 
hicle is inserted into a visual image of a background. The 
form plane tells which parts of the object plane that will be 
presented in the final image: white/seen, black/not seen. 

The object can be duplicated and reproduced in different 
sizes before placing them at the "right distance" in the 
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Figure 8 Inserting an object into a background 

background terrain. This possibility makes such images 
valuable in studying camouflage at different distances in 
the terrain. 

The object can be a military vehicle as in figure 8, or it can 
as well be a tree. If a tree is chosen as an object, it will need 
a separate form plane. It is possible to give a tree a partly 
transparent quality which makes the simulation more natu- 
ral . Thus it is possible to build up several trees in the terrain 
- also in front of the vehicles. 

Contrast manipulation 

Before placing the various planes in the final image it is 
possible to manipulate the contrasts of the original images. 
By modifying the contrast for parts of the object, simula- 
tion of camouflage measures like thermal screens over hot 
parts can be undertaken. 

The background images are recorded during clear days and 
nights. However, atmospheric contrast reduction both in 
the visual and thermal images can be introduced to the final 
image. This is done by applying a distance plane where 
each pixel is given the distance to the corresponding pixel 
in the background plane. The Lowtran 6 model is used for 
calculating atmospheric transmission for the line-of-sight 
to each pixel in the image. 

Introducing camouflage nets 

Camouflage nets are introduced into the images by apply- 
ing the thermal model described in the previous chapter. 
In the example shown in figure 9 a camouflage net is 
mounted over a combat vehicle. 

Modelling the net is as before, but modelling the vehicle re- 
quires a modified procedure. Information on surface tem- 
perature is needed for modelling, while the only informa- 
tion we got about the vehicle is an image. By calibrating 
the thermal camera by a blackbody when recording the 

Figure 9 Thermal camouflage nets 

image, a temperature scale is obtained, which in its turn is 
used to estimate the temperature in each pixel of the object 
image. 

Based on the assumption that the body of the vehicle is 
made up of 40 mm thick steel armour plates, the variation 
in vehicle temperatures over time is calculated. The hottest 
parts due to heat generated by the engine are, however, not 
varied as the external heat exchange phenomenon are as- 
sumed negligible for these parts. 

Although the shape of the net in this example is too regular, 
the figure illustrates the power of the described combina- 
tion of image manipulation and thermal modelling. 

Modelling thermal smoke 

Modelling smoke clouds are based on the assumption of ex- 
ponential degradation of the transmission through the 
smoke. Smoke grenades are modelled as depicted in figure 
10. From each grenade the smoke diffuses with time from 
the delivery point according to the equation 

where 
r 
m(r,t) 
C(t) 
R 
o(t) 

m(r,t) = C(t) • exp(- R2/2a{t)2 

position relative to delivery point 
mass concentration in r at time t 
total aerosol concentration at time t 
distance from cloud centre 
diffusion coefficient at time t 

(6) 

The diffusional spread of the smoke cloud has been over- 
laid the spread by wind in that a wind profile which in- 
creases exponentially from ground and upwards. 

Finally the transmission between the observer and each 
pixel in the image is calculated by integrating through the 
smoke cloud. The dynamics of an evolving smoke cloud 
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Figure 10 Thermal smoke 

can best be studied when the results are presented by means 
of video, of which a few frames are presented in figure 10. 

The model also gives the opportunity to model various 
types of smoke as shown in figure 11. 

Figure 11 Cold and warm smoke 

FURTHER WORK 

Although the mathematical models and the system for ma- 
nipulating images are powerful tools for studying camou- 
flage, we intend to improve the tool, and the work is already 
in progress. The aim of the work can be defined as: Given 
a thermal image of a terrain recorded under certain condi- 
tions, we intend to make a model giving the appearance of 
the same terrain under quite different meteorological con- 
ditions as well as at a different time of day. The intention 
is not to construct a fully synthetic image. The work will 
also seek to solve the same problem for military vehicles. 

The work proceeds in three parallel lines, closely intermin- 
gled: 

1) Modelling of the terrain ie mainly vegetation, which 
will be a challenging task, but not done in more detail than 
is necessary for obtaining reasonable results. 

2) Modelling of objects. Here we are prepared to acquire 
complete models from outside our establishment. 

3) Measurement of all relevant parameters, meteorologi- 
cal and others, with recording of thermal images at two 
measuring sites in Norway. Sampling frequency will be 
less than an hour. 
The results from the measurements will be needed both for 
input parameters for the model, and for evaluating the mod- 
el. 
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ABSTRACT INTRODUCTION 

Real world trials are very expensive, therefore synthetic 
imagery is used to assess the effectiveness of different 
camouflage schemes under a wide range of conditions. It 
is impossible to exactly reproduce the real-world 
synthetically, but for many applications this is not 
necessary. CAMEO-SIM has been developed as a broad- 
band (0.4 - 14 micron) physically accurate scene 
simulation system which models the interactions between 
the 'target' and the environment, such as the shadow 
effects of trees on helicopters and at longer wavelengths 
the reflection of thermal components on other surfaces. 
One of the key features of CAMEO-SIM is that images 
can be rendered to different levels of fidelity so that an 
appropriate balance between rendering time and accuracy 
can be achieved for different applications. CAMEO-SIM 
has undergone some verification tests and a more 
comprehensive validation programme is planned. 

The initial requirement was to assess the effectiveness of 
aircraft camouflage schemes but the system could be used 
to study camouflage on any type of vehicle. CAMEO- 
SM has recently been extended to give true colour visible 
band imagery in CIE X,Y,Z tristimulus values and to 
allow for different monitor characteristics. This paper will 
give a summary of CAMEO-SIM, describe the results of 
verification tests undertaken, present example images of 
different scenes in different wavebands and show the 
effect of different levels of image fidelity. 

All camouflage is a compromise between the 
requirements to match different backgrounds in different 
wavebands at different times of the year. The 
compromises made in the past were generally made by 
subjective assessment of the effectiveness, generally 
under a limited range of environmental conditions. 
Synthetic scene generation offers a viable alternative to 
field trials for the quantitative evaluation of camouflage. 
CAMEO-SIM has been developed as a physics based, 
broadband, scene simulation toolset to enable the 
quantitative evaluation of both current and future 
camouflage. The same toolset may also be used to assess 
concealment and deception methodologies. 

OVERVIEW CAMEO-SIM 

The goal of the CAMEO-SIM system is to produce 
synthetic, high resolution, physically accurate radiance 
images of target vehicles in operational scenarios, at any 
wavelength between 0.4 and 14 microns. The main 
components of the system are shown schematically in 
Figure 1. These are described in detail elsewhere [1]. The 
software was developed with a scaleable rendering kernel 
in which imagery can be produced at different fidelities 
and frame rates depending on the image application and 
wavelength of operation. 
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At longer wavelengths, such as the mid infrared, the full 
hemispherical integration of the incident irradiance 
enables the software to account for the thermal radiative 
interaction between different surfaces. An example of this 
interaction, in which hot surfaces are reflected in the road 
is shown in Figure 3. 

Figure 2: Visible band, clear day, BRDF properties 
applied to airframe, shadows from sun and sky. 

Figure 1. Block diagram of CAMEO-SIM components 
illustrating the data flow through the different processes. 

A key element of CAMEO-SIM is that there is a complete 
audit trail between the data used to form the image and 
the final rendered image. This means that it is possible to 
conduct carefully controlled manipulations of scene 
properties which can be repeated. 

The background scene is generated using MultiGen*. All 
geometric objects forming the synthetic environment are 
modelled using textured faceted structures. Texel values 
in these textures are mapped to real materials which have 
measured physical properties associated with them e.g. 
bi-directional reflectance. Each texel is then considered as 
a mixture of up to three different materials. This means 
that the physical properties of both soil and grass are 
modelled when using a 'grass' texture. Complex objects 
are modelled as a number of polygons. This means that 
the three dimensional effects of trees, including shadow 
effects can be simulated (Figure 2). 

Figure 3. CAMEO-SIM 3-5 micron image showing 
thermal reflections, no sensor effects. 
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IMAGE DISPLAY 

CAMEO-SIM computes the radiance in specified sub- 
bands for each pixel in the image. These are then summed 
to produce an 'in-band' grey-scale image. 

The software can also display each sub-band as a grey 
scale image or any three sub-bands as a false colour 
image. CAMEO-SIM can also display visible band true- 
colour imagery. This is done by first evaluating the 
spectral radiance image cube for a user-defined number of 
sub-bands between 0.38 and 0.78 microns. The spectral 
image cube is then converted into device independent 
colour space represented by the tristimulus values X,Y,Z, 
using the spectral tri-stimulus values of the CIE 1931 
Colorimetric Standard Observer. The monitor that is used 
for the image display is calibrated so that the X,Y,Z 
values can be converted to R,G,B values. Various 
luminance transforms can be employed to make best use 
of the limited CRT dynamic range (Figure 4). 

Figure 5: Visible band, clear day, all surfaces diffuse, no 
shadows, no sensor effects. 

Figure 4. Visible band image, no sensor effects. 

IMAGE FIDELITY 

The lowest fidelity mode is real-time and can be used to 
develop and preview the scene before it is passed to a 
scaleable higher fidelity rendering kernel. This high 
fidelity Tenderer can model directional reflectance effects, 
geometric occlusion of point and extended sources, and 
the spectral integration of the optical properties with the 
atmosphere. The level of fidelity required can be selected 
before rendering the image, so that appropriate imagery 
can be generated for different applications (Figures 5 and 
6). 

Figure 6. Visible band image, clear day, all surfaces 
diffuse, shadow effect from the sun, no sensor effects 
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SENSOR EFFECTS VERIFICATION AND VALIDATION 

At present CAMEO-SIM is used to create an image from 
a static sensor, with either static or moving 'targets'. The 
images can be displayed on a monitor for observer trials, 
or the digital image (in units of Wm"2sr'') can be analysed. 
The ongoing development programme is linking 
CAMEO-SIM with other programs so that a moving 
sensor can be modelled. In addition sensor effects such as 
MTF, sampling, jitter and noise can be added to the 
images (Figures 7 and 8). 

Figure 7. CAMEO-SIM 3-5 micron image, no sensor 
effects. 

Figure 8. Same image as that in Figure 7 with MTF, 
sampling, jitter and noise sensor effects added. 

A number of analytical tests have been conducted to 
verify the operation of the high fidelity rendering 
equations. These are reported elsewhere [2] and include: 

1. Blackbody radiance tests 
2. Contrast in an isothermal environment 
3. Shadowing and blocking 
4. Spectral calculations 
5. Radiometric calculation of lighting effects 
6. Directional   emission   of uniformly  textured   and 

heated spheres 
7. Material assignments on a texture 
8. Bi-directional reflectivity of uniformly textured and 

heated spheres 
9. Small target rendering 

These verification tests will continue and be extended to 
include validation tests. The validation processes will 
involve three separate approaches: 

1. 

2. 

Highly simplified scenarios that can be synthesised 
within CAMEO-SIM and measured (Figure 9) 
Comparison of the statistics of real and synthetic 
imagery. A range of techniques will be used 
including models based on human vision 
performance and higher order statistics. The 
significance of different effects, such as shadows, in 
different wavebands will be determined. 
Observer performance - such as comparison of 
detection ranges of aircraft in different camouflage 
schemes 

Figure 9. Photograph of the step object to be used in 
validation trials. The photograph shows how the object 

can be instrumented with thermocouples for temperature 
measurement. (Lighter patches in the image are shadows) 
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CONCLUSIONS 

CAMEO-SIM can generate physically accurate imagery 
between 0.4 and 14 microns to different levels of fidelity, 
to allow a trade-off between accuracy and rendering time. 
The software has undergone a range of verification tests 
to show that the correct values are computed. A 
programme of validation is underway to ensure that 
meaningful results are obtained using the software tools. 
This programme will address three different aspects of the 
synthetic imagery - statistics, real-world comparisons 
(including scenes with simple objects) and performance 
prediction. The functionality of CAMEO-SIM is being 
extended as part of an ongoing research programme. For 
example recent improvements include true-colour visible 
band image display, sensor effects and a moving sensor. 
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ABSTRACT 
This is a follow-on paper regarding last year's 
introduction of the development of a new 
thermal design and signature modeling tool. The 
U.S. Army awarded a Small Business 
Innovation Research (SBER) Phase II program at 
the end of 1997 to create a new design tool 
called MuSES (Multi-Service Electro-optics 
Signature) code capable of meeting the arising 
requirements for rapid prototyping as well as 
addressing the weaknesses of current thermal 
signature models. Because of the strong 
connections between signature management for 
military ground vehicles and heat management 
for commercial automobiles, there is 
considerable dual-use collaboration and 
commercial commitments from the automobile 
industry. The first version of this program is 
currently available commercially. This paper 
will discuss what has been accomplished and 
what has yet to be done this year. A key 
ingredient to the success of this modeling tool, 
particularly for rapid prototyping, is the 
conversion of multiple solid CAD geometry into 
a faceted mesh that is clean (i.e., does not 
require additional human interaction and does 
not add small sliver type polygons). 

TAI THERMAL PRODUCTS 
In the past, ThermoAnalytics supported many 
different sponsors with individual codes: 
TACOM-PRISM, AFRL-TCM2, Ford- 
RadTherm, Chrysler-CTD, Commercial- 
WinTherm). By building a new WinTherm that 
serves as the thermal solver kernel for all of 
these programs plus future ones, upgrades are 
automatically passed on to all specialized 
modules. 

Figure 1. ThermoAnalytics' Complementary 
Programs Provide a Leveraged Advantage for 

MuSES. 
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Description of WinTherm/MuSES Features 
;l WinTherm   M?MuSFS 

File    Edit    View    Iools    Options 

Geometiy       Editor 

Part Selector- 
Name 

Analyze I   Post Process 

Exhaust Compartment \             \ jSl3 

Total Parts: 116              \            \ 

P roperties   |   Curves  j   EflwronmerV 1   Materials 

Temperature t                   \ 

_ _ ,                K Standard    \ 
f? Calculated !      '                   \. sfc 

Create, Import, or 
Edit Geometry 

Material: 

Thickness (mm) 

Surface Condition: |Steel. As Rcvd 

- Initial Temperature (dag C) 

Figure 2. Features of WinTherm / MuSES 

Just a few of the features can be seen above 
from the graphical user interface. Many more 
will be presented next. 

GUI: Intuitive User Interface that 
Combines ALL Aspects of Modeling into 
Single Program 
• Geometry 
• Model Construction / Editing 
• Analysis Pre-Processing and Solution 
• Post Processing of Results 

The Graphical User Interface is one of the key 
features that WinTherm is so easy to use. We 
obtained a lot of engineering user feedback 

during the development of the GUI that 
contributed to the layout and user interactions. 

Code: Cross-Platform and Complete 
Rewrite in C/C++ 
Because there are both UNIX and Windows 
users, we felt it was important to develop only 
"one" code to span across all platforms. This 
was accomplished by using a commercial cross 
platform tool called Qt. A lot of time went into 
the selection of this tool and we are very 
satisfied with the choice. 
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Hierarchical Data Format: 
Machine/Language Independent File 
The HDF file format provides many benefits: 
cross-platform and language independence, 
extensible (can add new data to the format) 
without affecting previous readers, compact 
(binary). 

Thermal Solver: New Modular FDE 
Solver that Features Partially Direct 
Solution and Net- Radiation Method 

• Partially-Direct Method 

• Computationally Expedient Modeling of 
Thin or Thermally Diffuse Elements 

• Net-Radiation Method 

• Accurate Modeling of Low Emissivity 
Cavities 

• Allows Temperature Dependent Emissivity 
(see Figure 7) 

• Modular and General Purpose 

• Add "Hook" Functions - User Defined 
Boundary Conditions. 

• Conduction: Automatic 3-D Linkages with 
Anisotropic Conductivity in the Works 

• Convection: Enhanced Wind Convection 
and Internal Convection Libraries 

Background Models: Spatial 
Backgrounds using Digital Elevation 
Model (DEM) inputs 
Includes All PRISM 1st Principles Terrains 
• (Soil, Foliage, Concrete, Asphalt, Snow, 

Water, etc.) 
Default Background 
• Influences (but Not Influenced By) Target 
• Can Be Used in Conjunction with Faceted 

Terrains (Use Small Faceted Terrain Local 
to Target) 

Background Part Types (Geometry Optional) 

• No Geometry 

• No Interaction With Target/Other 
Backgrounds 

• No Need to Make Additional MuSES Runs 

• With Geometry 

• Full Interaction With Target/Other 
Backgrounds 

• Can Exclude Rigorous View Factor / 
Apparent Area Calculation on a Part Basis 
(e.g., for sections distant from target) 

• Geometry Can Be Read From Digital 
Elevation Maps (such as produced by 
ARC/TNFO, etc.) 

View Factors: Accelerated Ray-tracing 
Technique using 3D Spatial Subdivision 
of Voxels 
The acceleration technique is 3D spatial 
subdivision 

1. Spatially divide object/scene into voxels 
2. Only voxels pierced by ray being cast 

are searched for object intersections 
3. Greatly reduces number of ray/obj ect 

intersections that must be evaluated 

Speed Comparison 

• BRDM2 Test Case - 3,743 patches (1 elem / 
patch) 

• Indigo2 195Mhz Rl 0000, Solid Impact 
Graphics 
1. Single Plane Hemicube (128x128 

window): 105.7s 
2. Equivalent Accuracy (Fast) Ray Trace 

(1.9m rays): 63.5s 
3. Standard Accuracy Ray Trace (7.7m 

rays): 189.5s 
• Standard PC Hardware (PHI 500) 

1. Equivalent Accuracy (Fast) Ray Trace 
(1.9m rays): 28.5s 

2. Standard Accuracy Ray Trace (7.7m 
rays): 101.7s 
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Thermal Solver Definitions and Selected Feature Details 

Node Associated 
With Front Surface 

Back Surface- 
Node Associated 
With Back 
Surface 

Isometric View of Element Side View of Element 
Figure 3. Surface of a 3D Element is What We Commonly Refer to as a Facet 
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Figure 4. The Element (and its Associated Thermal Nodes) is the Building Block for the 3D Heat 
Transfer Solution that Includes a Sophisticated Enclosure Method Radiation Solver 
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Only the surface mesh is 
required for geometric 
modeling. Internal nodes are 
automatically applied as needed 
with specialized Part Types. 

geometry        Editor Analyze   |   Prism Export |    Post Process 

r Part Selector —- ;   '" •• V'.V:V;;";  :;>-j./^-' •'—_—_— 

Name Number 
31 Floor Pan 

Total Parts: 2 
"3'F"1 

Add Part 

Delete Part 

<" Assigned 

<* Calculated 

Properties j   Curves  J   Environment j   Materials  |   Scenario j 

r-Temperature -      Part Type PRISM region lype 1 

~1 3-Layer 

•/W-VT^' 

Middle  J   Back |   Spedal Types 

Layer Type 

Thickness (mm) 

% Contact Area (0-100) 

Surface Condition (Front) Steel. As Rcvd       0.74 

Surface Condition (Back)    Steel. As Rcvd       0.74 

Figure 5. Composite (Multi-Layer) Part Inputs are Easily Added 

1 I 1 erties   |   Curves  j    Environment |   Materials       Scenario 

Temperature -      Part Type PRISM region type 11 

" Assigned 

<*• Calculated 

Front 

Standard 
3-Layer 
Engine Cooling Air Grill 
Engine Exhaust Stack 
Engine Bulkhead 
Track 

Middle 

e 
Wheel Hub 

Fraction of Areaforconvection j i 

.-Wheel Parameters 

Radius (m) |1 

| 

-Tire Type 

r? Solid 

<~ Tread. Air Filled 

r Sidewall, Air Filled 

Other Specialized Part Types include 
the PRISM types 
• Equivalent     PRISM     facet     types 

displayed 
• Includes parameters (e.g., radius) as 

appropriate 
• Temperature Part Type PRISM regiontype 7 

]r Assigned   j 

*" Calculated ! 

-0 
Front |   Middle  |   Back       Special Types 

Fraction of Area for convection (1 

;-• Track Parameters 

r Side  
If Left   r Right 

Position - 

C" Front 

<~ Rear 

r Top 

<~ Bottom 

Figure 6. Specialized Part Types Include the Familiar PRISM "Facet Types" 
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• The Transient Temperatures of Plates 1 & 2 Increase when the Actual Temperature Dependent 
Emissivity Properties are Used in the Analysis (in place of Constant Properties) 

• Emissivity of Oxidized Aluminum varies from .2 to .32 over temperatures from 100 C to 500 C 

Figure 7. Temperature Dependent Emissivity for a Multiple Bounce Radiosity Solution is Allowed 
with the Net-Radiation Method of Solution 

213 



Original Fine Mesh (right) is 
"Grouped" into Radiation "Patches" 
(below) based on Patch Parameters - 
Producing Efficient View Factor 
Storage 

geometry   ) editor      Analyse   | got! process   | 

Results I Params  | Converge    Patch Params   | 

Patch Generation Mode -, 
f One Patch Per Element 

<? Use Patch Generator 

Paten Generator Input Parameters 

Desired Patch Area (cm-?) fllSO 

Max Average Normal Deviation (rjeg)   130 

Max Individual Normal Deviation (deg) 130 

Max Aspect Ratio 

Figure 8. Patch Generator: Efficient Solution for View Factor Compression of Large Models 

CFD Interface: Direct Link to CFD programs such as FLUENT for Exchanging Data: h, Tf, 
Twall 

• Import Convection Boundary Conditions obtained from CFD Analysis 
• Update Convection Boundary Conditions in an Existing Model when New CFD Results are 

Available 
• Batch Mode of Operation Supports Automated CFD Import 

--„ „•.„.-•,.. 
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Figure 9. The Next Version of WinTherm will Allow a Direct Interface and Exchange of CFD 
Data (Film Temperatures and Heat Transfer Coefficients) 
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1-D Internal Fluid 
Flow is Created from 
Geometry 
User Inputs 
Parameters for 
Various Fluid 
Elements (pipe, 
pump, reservoir, etc.) 
Flow and 
Temperature are 
solved 
Simultaneously 
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Figure 10. Internal Fluid Flow is Coming in WinTherm 5.0. 

TACOM is Developing Complementary Geometry Conversion and Meshing 
Tools that will directly Interface with MuSES in the Future 

fac (fact Jul  14  13:47:27 BIT  1999 V 3.1 1 6    13786    54734 

Figure 11. Goal of Eclectic is Transformation of CAD Geometry into Ideal Facet.zation 
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Validation of Thermal Solver 

H Comparison of Experimental 
& Computational Results for 
Several Points 

I     The Model vs. Measured 
Temperatures vary by 1% to 
10% 

M Data Courtesy of Ford Motor 
Company 

Sample Point 

Steady State Temperature Distribution 
of Fire-Wall and Brake Master Cylinder 
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Figure 12.   Comparison with Experimental Results 

216 



Sample MuSES IR Models 

30.e 15. e 

Figure 13. Modeling with MuSES 

*e.e 

For further information about MuSES, PRISM, 
WinTherm, or ThermoAnalytics, visit the web 
site at http://www.thermoanalytics.com/muses/. 

WinTherm can be downloaded from this site for 
demonstration and evaluation. If there are 
further questions, email us at 
info@ThermoAnalytics.com or phone us at 
1-800-214-3766. 
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Infrared Signature Estimates of a High-Temperature Exhaust Plume 

Jeffrey A. Hoffman 
William R. Reynolds 

Signature Research, Inc. 
Calumet, ML 49913 

ABSTRACT 
Estimating thermal signatures of a high-temperature, 
multi-component gaseous plume can be a formidable task. 
Issues include assessing the plume's structure resulting 
from an endless variety of exhaust exit geometry and 
ambient flow fields. In addition to fluid mechanics, the 
emission and absorption properties of exhaust gases are a 
function of concentration and local temperature, which 
vary throughout the plume. This paper summarizes a 
modeling effort that addresses both the fluid mechanics 
and gas emission issues. This approach uses 
commercially available software to generate a solution for 
the fluid mechanics. A custom written postprocessor 
discretizes the software's solution into small control 
volumes and estimates the absorption and emission from 
each volume. Lastly, apparent temperatures calculated 
along a user defined line of sight provided contours of 
apparent temperature. Three example signatures in the 
bands of 3-5 microns and 8-12 microns are provided for 
three distinct plumes. 

INTRODUCTION 
Estimating thermal signatures prior to product 

fabrication can be a valuable step towards a successfully 
developed product. A variety of existing software 
packages allow designers to estimate a vehicle's thermal 
signature spectrally prior to fabrication [1]. However, 
modeling efforts to date often ignore signatures associated 
with vehicle exhaust plumes. In addition, software 
products that implement plume models often rely on 
specialized solutions applicable to a narrow range of 
exhaust geometries and flow configurations [2], Reasons 
for these shortcomings and/or over-simplifications are the 
complex emission properties of gases coupled with the 
challenge of fluid mechanics issues. This paper describes 
a recent approach to modeling thermal signatures of 
gaseous plumes that addresses both the fluid mechanics 

and gas phase emission issues. This approach 
incorporates a computational fluid dynamic (CFD) model 
to generate temperature and species distributions 
throughout the plume. With additional post processing 
the local absorption and emission properties are estimated 
spectrally using MODTRAN [3]. The emissive power 
and absorption properties are integrated along a user- 
defined line of sight, providing contours of apparent 
temperature on a spectral basis. 

DISCUSSION 
Figure 1 contains a process flow diagram of the 

steps used to model the thermal signature of a gaseous jet. 
Modeling process inputs include the exhaust geometry, 
spectral range of interest, engine operating conditions, 
and ambient conditions. The engine operating conditions 
include adequate information to estimate the exhaust exit 
temperature, gas species concentrations, and volumetric 
flow rate. A custom written post processor used the 
steady state temperature and species information obtained 
from the CFD model as inputs. The post processor 
discretized the CFD solution into small cube shaped 
control volumes. MODTRAN, a software capable of 
estimating absorption and emission properties of gases on 
a spectral basis, was applied to the contents in each of the 
control volumes. Using the absorption and emissive 
power properties from each cell along a user-defined line 
of sight, the transmitted emissive power was determined. 
Lastly, using a blackbody assumption for the spectral 
band of interest, apparent temperatures along each line of 
sight were calculated. 

Figure 2 schematically demonstrates the layout 
of the discretization process. The plume lies between a 
hypothetical background plane and the image plane. The 
background's emissions pass along the line of sight where 
it is attenuated and/or increased depending on the 
absorption and emissive properties of the control volume. 

Modeling Process Inputs 

Exhaust Geometry 
Spectral Range 
Engine Operating Conditions 
Ambient Conditions 

CFD Modeling Post Processing 

1) Descretize CFD solution 
Commercial CFD Softwa^J   >} Apply M0DTRAN t0 each cdi 

3) Integrate along line of sight 
4) Calculate apparent temperature 

Figure 1: Process flow used to model the thermal signature of an exhaust plume. 
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Note that for illustration purposes, only one line of sight 
is shown. For the example signatures presented in this 
paper, there were 169 separate lines of sight (an array 13 
by 13 lines of sight) used to create a single image of 
apparent temperature contours. 

Figure 2: Schematic describing the discretization and 
post processing of the CFD results used to generate 
apparent temperature contours of the exhaust plume. 
(Note for illustration purposes, only one line of sight is 
shown). 

EXAMPLES 
In this section, three example thermal signature 

estimates are provided. For all three cases, the exhaust 
exit velocity was 10 m/sec, the exhaust exit temperature 

012.7 cm 

25 cm 

5.1 cm 

Figure 3: A schematic of the circular exit used for Cases 1 and 
II and the rectangular exit of Case 111. 

was 700 (°K). Exhaust species included in the analysis 
were H20, COj, and N2 at molar percents of 14, 7, and 75 
respectively. Initial concentration of soot particles was 
0.071 g/cm3 and modeled as spherical shaped particulates 
with a diameter of 2 microns behaving as blackbodies. 
Cases I and II utilized a circular shaped inlet while Case 
III used a rectangular shaped exit with the dimensions 
shown in Figure 3. To maintain the same volumetric flow 
rate between all three cases, the exit areas were kept 
constant at 127 cm2. For the CFD model, the 
thermodynamic properties of both the ambient exhaust 
gases were assumed to be nitrogen. 
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Figure 4: Contours of apparent temperatures of a circular cross section exhaust plume at a spectral range of 3-5 
micronfleft) and 8-12 micron (right). 
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Figure 4 represents the apparent temperatures 
observed from the top and side views of the plume for the 
spectral ranges of 3-5 microns (left) and 8-12 microns 
(right). As expected, the highest temperatures are noted 
along the plume's centerline. Due to the symmetry of the 
model, the top and side views are identical. Peak 
apparent temperatures for the 3-5 and 8-12 micron ranges 
were 610 CK and 310 °K respectively. 

Figure 5 depicts apparent temperatures for case 

due to the thin plume structure as viewed through the 
plume in the Top View. The shorter distance reduces the 
amount of hot gaseous emitting along that line of sight. 
In contrast, the side view, which has a line of sight 
through more high temperature species, exhibits peak 
apparent temperatures of Cases I and II. This drop in 
apparent temperature is due to effects of a flattened cross 
section, which reduces the viewing distance through hot 
gases. In addition, the rectangular cross section enhances 
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Figure 5: Contours of apparent temperature of a circular cross section exhaust with a 2.0 m/sec cross wind. Spectral 
ranges 3-5 micron (left) and 8-12 micron (right). Note the crosswind inlet was placed at the bottom of the Top View). 

II. In this case, the boundary conditions were identical to 
those of Case I with the only exception of adding an 
ambient cross flow field of 2 m/sec. Peak apparent 
temperatures were the same as the previous case. 
However, interactions between the plume and ambient 
flow field generate an entirely different plume structure as 
it interacts with the ambient flow field. 

Lastly, Figure 6 provides the estimated apparent 
temperature for Case III. Peak temperatures as viewed in 
the top view were 100 °K and 10 °K lower for the short 
wave and long wave bands respectively compared to the 
previous cases. This reduction in apparent temperature is 

mixing with the cooler ambient air by increasing the 
plume perimeter, thus, increasing the region influenced by 
turbulent mixing. 
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Figure 6: Contours of apparent temperature of a rectangular cross section exhaust with a 2.0 m/sec cross wind. 
Spectral ranges 3-5 micron (left) and 8-12 micron (right). 

CONCLUSION 
This paper reviewed recent work used to 

estimate the thermal signature of an exhaust plume. The 
method incorporated a CFD model to generate the 
temperature and species concentration throughout the 
plume structure. Custom written software discretized the 
CFD derived solution into small control volumes. 
MODTRAN was applied to each volume, thus, providing 
estimates of the absorption and emissive power within 
each control volume. The software integrated the effects 
of the local species along a user-defined line of sight. For 
a given line of sight, the resulting two-dimensional image 
consisted of contours of apparent temperature. 

3. Berk, A., L.S. Bernstein, and DC Robertson, 
"MODTRAN: A Moderate resolution Model for 
LOWTRAN 7", AFGL-TR-89-0122, 1989. 
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ABSTRACT 

The U.S. Army Edgewood Chemical Biological Center 
(ECBC) and its parent command are committed to the 
implementation of simulation-based acquisition and 
training techniques. Their value has been demonstrated 
repeatedly by many organizations and in countless 
situations representing all aspects of the product life 
cycle, including combat development, material 
development, manufacturing, training, and employment. 
Models and simulations have become practical tools that 
routinely replace laboratory experiments, field activities, 
and training exercises while reducing cost and improving 
safety. They could be particularly effective for smoke and 
obscurant scenarios, which carry significant 
environmental clearance costs and additional safety 
considerations. Numerous models have been developed to 
simulate smoke and obscurant systems, but most of these 
have focused on detailed scientific and engineering issues, 
such as cloud physics and electro-optical performance. 
Although several attempts have been made to integrate 
these models into constructive and distributed interactive 
simulations, no smoke and obscurant model has emerged 

that supports operational level activities. This is a 
significant shortcoming that hampers both training and 
acquisition. This paper reviews the state of smoke and 
obscurant models and illustrates how existing simulations 
have been used to support acquisition and training. It also 
identifies requirements for operational-level tools and 
establish a framework for their development. 

1. MODELING AND SIMULATION TRENDS 

Modeling and simulation (M&S) has become an essential 
technology that is influencing a growing number of 
mission-critical activities. Organizations within DoD are 
increasingly using it for operational planning; research, 
development, and acquisition; test and evaluation; 
training and mission rehearsal; and doctrine development. 
This growth is being fueled by budgetary constraints, 
environmental concerns, and technological advances, 
which reduce the cost of complex computer systems while 
increasing their capabilities. 

Historically, most M&S activities have been conducted in 
vertical stovepipes within application domains (figure 1) 
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Figure 1. DoD modeling and simulation domains. 
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and there has been little horizontal integration. The 
constructive wargames and virtual simulations used for 
training have seldom been linked, for example, to 
engineering-level simulations or the physical models 
they use. 

The computational burden imposed by high fidelity 
models has often limited their utility beyond the 
application domain for which they were developed. This 
is certainly true for smoke and obscurant models, which 
have little presence in the preeminent simulation 
environments. Until recently, horizontal integration was 
infeasible due to limitations imposed by hardware, 
software, and design methodologies. This situation is 
changing, however, as technological developments 
increase computer system performance, simplify 
connectivity, reduce cost, improve usability, enhance the 
development process, and promote software reuse. These 
factors are reshaping the nature of DoD models and 
driving a paradigm shift toward a more flexible and 
efficient simulation environment (figure 2). 

The Defense Modeling and Simulation Office (DMSO) 
has capitalized on these trends to produce a High Level 
Architecture (HLA)1 that unifies all M&S domains under 
a single technical framework. Future DoD M&S systems 
will be required to comply with the HLA, which specifies 
a design philosophy, imposes documentation 
requirements, and provides a common cross-platform run 
time infrastructure (RTI). The HLA will facilitate 
linkages between models and promote software reuse 
across all M&S domains. We are entering a period where 
software, that was developed for one specific purpose, can 
be used without modification in many different 
applications. This will enable engineering-level, 
constructive wargames, and virtual simulations to use 
physical models to increase their fidelity with real world 
phenomena. 

2. SMOKE AND OBSCURANT MODELS 

Several physical models have been developed to simulate 
the production, transport, and diffusion of battlefield 
obscurants and assess their effect on tactical sensors. The 
U.S. Army Research Laboratory (ARL) has been a major 
contributor and it maintains two smoke and obscurant 
models in its Electro-Optical Systems Atmospheric 
Effects Library2,3. GRNADE4 simulates multiple-round 
salvos of tube-launched grenades (L8A1 and M76) and is 
used for self-screening analysis. The Combined 
Obscuration Model for Battlefield-Induced Contaminants 
(COMB1C)5'6 is more comprehensive and can simulate: 
high explosive and vehicular dust; phosphorus and 
hexachloroethane munitions; diesel fuel, oil, and rubber 
fires; generator-disseminated oils; other screening 
aerosols, and user-defined sources. 

COMB1C has been used in numerous, diverse 
applications and is arguably the dominant model in this 
field. It operates on level terrain and only considers a 
horizontally homogeneous wind (figure 3). These 
limitations led ARL to develop a derivative model, the 
Simulation of Aerosol Behavior in Realistic 
Environments (SABRE)7, that can use a terrain-dependent 
wind field. SABRE was an EOSAEL module for some 
time, but is no longer supported by ARL and has been 
withdrawn from the library, leaving it without a smoke 
and obscurant model that handles non-uniform wind 
and terrain. 

The Joint Project Office for Smoke, Obscurants, and 
Special Technologies Counter-measures (JPO-SOSTC), 
Naval Surface Warfare Center (NSWC), ECBC, and 
OptiMetrics, Inc. (OMI) have enhanced SABRE to create 
the Transport, Diffusion, and Radiance (TDR) model8. It 
has been integrated into several applications and can 
operate in a stand-alone mode on numerous computing 
platforms. 

Stand-alone simulations 

Tailored-made code 

Procedure-oriented code 

Module interaction via procedure calls 

Tightly coupled architecture 

Predetermined scale 
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Networked simulations 

Reusable code 

Object-oriented code 

Module interaction via messages 

Loosely coupled architecture 
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Rapidly reconfigurable (plug and play) 

Figure 2. Modeling and simulation trends. 
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SMOKE MODEL TERRAIN MODEL WIND MODEL 

COMBIC (ARL) 

Phase 1   Simulate smoke production, transport. & diffusion 

Phase 2  Compute transmrttance along specified ines-of-sight 

SABRE (ARL) 

Phase 0: Assimilate wnd field and environmental data 

Phase 1: Simulate smoke production, transport, & diffusion 

Phase 2: Compute transmittance along specified hnes-of-sight 

TDR v1.0 - 4.0 (OptjMetrics. Inc. for JPO-SOSTC. NSWC. and ECBC) 

Phase 0: Assimilate wind field and environmental data 

Phase 1: Simulate smoke production, transport. & diffusion 

Phase 2: Compute transmittance along specified ines-of-sight 

Phase 3: Compute smoke concentration, exposure, and deposition 

Honzonbaty homogenaous 

Honzontaty homogeneous 

High Resolution Wind 

Horgontaiy homogeneous 

High Resokjbon Wind 

Winds on Critical 
Streamline Surfaces 

Figure 3. Lineage and primary characteristics of COMBIC and its derivatives. 

COMBIC and TDR were originally developed in the mid 
1980s to the early 1990s using prevailing techniques. 
They are large, monolithic programs that are written in 
FORTRAN using extremely unstructured code. Their 
software components make extensive use of global 
variables and are, therefore, highly interdependent. In 
short, they are not well suited for use in a simulation 
environment that is increasingly distributed and object- 
oriented. 

Both models describe clouds as a collection of one to five 
subclouds, which can be either Gaussian puffs or plumes. 
When a source is activated, subcloud states are computed 
at discrete downwind distances and the results are saved 
in a history file. All predictions are made using the 
atmospheric conditions that existed at the time of source 
activation. Although this approach is computationally 
efficient, it is not responsive to changes in atmospheric 
conditions that might occur during the cloud's lifetime. It 
also requires a large amount of data to be maintained (and 
possibly transferred) for subsequent calculations. 

Because they were developed several years ago, 
COMBIC and TDR only simulate sources and obscurants 
that were available (primarily to U.S. forces) at that time. 
The models have not been updated significantly to include 
equipment, munitions, or materials that have been fielded 
in recent years or are currently under development by the 
U.S., our allies, and potential adversaries. Both models 
enable the user to specify source and obscurant 
characteristics through data inputs, but this requires an 
intimate knowledge of the material and model properties. 

Neither of these programs model vehicles or vehicular 
components. They have no awareness of specific vehicle 

types nor the location and orientation of smoke generation 
equipment on those vehicles. Consequently, COMBIC 
and TDR could not be used by themselves to examine 
operational usage where component placement is an issue. 
This limitation is aggravated by their inability to accept 
unscripted inputs. The models cannot be used without 
augmentation to respond to ad hoc smoke events that 
might be generated randomly, by a constructive wargame 
under player control, or by networked simulators in a 
virtual exercise. In addition some deficiencies have been 
noted in their predictive algorithms. Most notably, 
COMBIC does not accurately model evaporative losses 
from disseminated oils as a function of temperature9. This 
affects the predicted quantity of suspended liquid that is 
actually available for producing screening effects, a 
critical factor in some applications where oil smokes are 
employed. 

3. SMOKE SYSTEM PERFORMANCE MODEL 

The Smoke System Performance Model (SSPM)10 was 
developed by ECBC and OMI to eliminate many of the 
limitations noted above. It is a collection of C++ classes 
that model the essential elements of smoke and obscurant 
systems. The classes can be integrated with engineering- 
level models, constructive wargames, and virtual 
simulations to enhance their ability to simulate battlefield 
obscuration. 

SSPM models relevant items, such as vehicles, 
components, clouds, obscurant materials, and vehicular 
grenades. Each class encapsulates the essential technical 
characteristics of the item it represents, as they relate to 
smoke and obscurant production, and provides default 
functionality. The default behaviors vary in sophistication 

224 



and can be overridden if enhanced functionality is 
required The notional default behavior of SSPM clouds 
can be enhanced by using a smoke and obscurant model, 
such as COMB1C or TDR, to simulate cloud production, 
transport, and diffusion. When this is done, SSPM acts as 
a preprocessor by simulating operations at a higher level 
and directing the smoke and obscurant models to place 
clouds with specified characteristics at designated times 
and places. 

SSPM is limited only by the scope of the systems it 
currently models. The latest version can simulate thirteen 
vehicles, seven vehicle-launched grenades, vehicle engine 
exhaust smoke systems, and two smoke generators. It 
does not yet model smoke pots or artillery, mortar, rocket, 
and aircraft-delivered obscurants. Only one of the 
vehicles and one of the grenades are foreign systems. 

4. ENGINEERING LEVEL MODELS 

SSPM has been linked to COMBIC in the Cloud Density 
Visualization Utility (CDVis)10, an engineering-level 
model that presents a graphical representation of 
simulated clouds (figure 4). CDVis uses SSPM to execute 
complex obscuration scenarios, COMBIC Phase I to 
predict cloud histories, and COMBIC Phase II to compute 
concentration path lengths along specified lines-of-sight. 
The concentration path lengths or their corresponding 
transmittance values are then presented as false color 

images, enabling the user to perceive the clouds in three 
dimensions as a function of time. 

SSPM has also been linked to COMBIC in a battle 
management system (BMS) for chemical staff officers 
that will be used to evaluate smoke and obscurant plans 
(figure 5). The BMS is similar to CDVis in its use of 
SSPM and COMBIC, but it superimposes a birds eye 
view of the simulated clouds on a tactical land map. The 
BMS also predicts sensor effectiveness on a horizontal 
plane from a given location at a designated time and 
distance above ground level. Effectiveness is presented as 
a radar plot that uses green, amber, and red to depict 
regions of increasing cloud density in accordance with 
specified transmission thresholds. 

This program demonstrates the power of object-oriented 
methodologies, which foster software reuse by 
encapsulating functionality and enabling components to 
be assembled into new and different applications. Most of 
the smoke-related code in BMS is identical to that used in 
CDVis. The only difference is some minor additions that 
were applied to support its unique display requirements. 
Also, the BMS graphical user interface is written in Java 
while SSPM and its CDVis extensions are written in C++ 
and the extended cloud class places an object wrapper 
around COMBIC's FORTRAN code. The object-oriented 
technology enables these disparate components to be 
drawn together with relative ease to create a new and 
useful application. 
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Figure 4. CDVis displaying cloud density images for the front, 
side, top, and radial views of a simulated obscuration event. 
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Figure 5. Chemical Staff Officer's BMS displaying a sensor effectiveness plot 
superimposed on a cloud density image of a simulated obscuration event. 

5. CONSTRUCTIVE WARGAMES 

JPO-SOSTC, NSWC, the USMC Systems Command, and 
OM3 have integrated TDR into a many-on-many 
Sensor/Obscurant Engagement Simulation (SOES). It has 
been used by combat and material developers to assess 
tactical concepts for smoke employment in littoral 
operations (figure 6). SOES uses physical models to 
simulate sensor performance and TDR Phase I to produce 
terrain-sensitive smoke clouds. Intervisibility issues are 
addressed using digital terrain elevation data and TDR 
Phase II. 

SOES uses TDR as an independent executable program 
without augmentation, so it is limited to the smoke 
sources that TDR inherently supports. These sources are 
positioned and activated in accordance with an scripted 
scenario. 

The US Army Training and Doctrine Command has 
integrated COMBIC into CASTFOREM, a stochastic 
force-on-force model that is used to assess combat system 
performance11. It is the Army's primary tool for 
conducting formal Analysis of Alternatives (AoA). 
CASTFOREM uses COMBIC to predict transmissivity 
through obscurant clouds, which have been produced by 
simulated combat events. When activated, COMBIC is 
employed throughout the gaming exercise, but the smoke 
effectiveness assessments are limited to discrete 
engagement segments and only affect certain operations, 
such as laser range finding and missile flyout. During 
laser operations, CASTFOREM does consider the affect 

of obscurants on a laser beam and will attenuate the 
returning signal appropriately. During guided missile 
flyouts, CASTFOREM periodically uses COMBIC to 
determine if obscurants have cause the missile to 
break lock. 

Obscurant usage places a large computational burden on 
CASTFOREM and can significantly increase run times. 
Because COMBIC is used in its native form, 
CASTFOREM can only use standard sources. And, 
because there is no direct linkage to operational entities, 
such as vehicles, artillery units, and aircraft, smoke events 
must be manually inserted by exercise controllers. 

6. VIRTUAL SIMULATIONS 

In recent years, DoD has invested heavily in distributed 
interactive simulation (DIS) technologies that enable 
manned and unmanned simulators to interact on a 
common virtual battlefield. DIS simulations have been 
used extensively for small unit training and are 
increasingly used in other applications, including 
simulation based acquisition. Interactions are facilitated 
through the exchange of messages using well defined 
protocols. The DIS standard provides for the transmission 
of some smoke information, enabling one battlefield 
entity to produce a smoke event and report its state to all 
other networked simulations. 

The Modular Semi-Automated Forces (ModSAF) 
program is used extensively in DIS applications to 
populate the virtual world with battlefield entities, such as 
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Figure 6. A SOES display depicting terrain sensitive TDR-generated clouds. 

aircraft and armored vehicles. These entities behave in an 
intelligent manner and are indistinguishable from their 
manned counterparts. 

The use of smoke and obscurants by ModSAF entities is 
notional. Certain vehicle types have a limited ability to 
launch salvos of self-protective grenades and 
artillery/mortar projectiles. No other smoke sources are 
supported. ModSAF uses pre-computed COMB1C history 
files to instantiate obscurant clouds, but these clouds are 
limited to one subcloud each, which severely restricts 
their fidelity. ModSAF does consider obscurant effects on 
entity engagements, but few other D1S applications do. 
The scene generators on most manned DIS simulators 
cannot render smoke clouds (with the exception of some 
trailing effects attached to some entities) and they do not 
affect crew vision whatsoever. 

The Close Combat Tactical Trainer (CCTT) is a family of 
networked simulations that is used to train armor, cavalry, 
and mechanized infantry platoons in the performance of 
collective tasks. CCTT includes manned simulators for 
numerous combat vehicles and a semi-automated forces 
program (similar to ModSAF) that can control a wide 
variety of friendly or opposing units. CCTT uses a variant 
of the DIS standard protocols to establish and maintain 
the synthetic environment. 

CCTT has an extremely limited capability for simulating 
smoke events and only supports three obscurant types: 
hydrochloric acid, red phosphorus, and white phosphorus. 
Manned CCTT simulators do render smoke clouds using 
an animation technique that can vary transmittance in 
accordance with obscurant characteristics. This does 
affect crew visibility which can influence combat 
operations. Other obscurant effects are not supported. 

7. FUTURE REQUIREMENTS 

Smoke and obscurants do affect battlefield sensors and 
those effects can influence combat operations. It is 
important for obscurant systems to be reasonably 
represented in models and simulations so that their 
influence can be properly assessed. The capabilities and 
limitations of U.S., allied, and opposing forces must all be 
considered. Smoke and obscurant modeling should not be 
done for its own sake, but it must be done to insure that 
soldiers are properly trained and equipped to operate on 
the dirty battlefield. It is incumbent upon the smoke and 
obscurant community to make sure that occurs. 

The survey presented above describes the current state of 
smoke and obscurant modeling. It is by no means 
comprehensive, but does highlight strengths and 
weaknesses in several application domains. The survey 
illustrates that smoke and obscurant modelers have done 
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simulate the growth, transport, and diffusion of obscurant 

requirements and computational constraints. And, the 
physical models have been used in numerous applications 

survey also illustrates, however, that smoke and obscurant 
modelers have foiled to accomplish what heretofore was 
infeasible to do. Despite all good intentions and a lot of 
intense effort, they have not managed to insert a 
significant amount of smoke and obscurant play into the 
tactical simulations that are routinely used for training and 
simulation-based acquisition. Given technological 
limitations, it was just too difficult to achieve. That 
situation is changing. 

Recent advancements in hardware and software 
technologies are enabling simulations to model physical 
phenomena with increasing fidelity. The emergence of 
new design methodologies is facilitating the development 
of true software components that can readily be used in 
diverse computing environments. This is an excellent time 
to begin the development of smoke and obscurant 
components for the simulation community at large. 

These components must be comprehensive, flexible, 
authoritative, efficient, self-contained, and HLA 
compliant, as described below: 

Comprehensive. Collectively, the simulation 
components should model all smoke and obscurant 
systems that U.S. forces are likely to use or encounter 
on any future battlefield. 

Flexible. For maximum applicability across all M&S 
domains, each component (or variation thereof) must 
be able to operate at several resolutions. High fidelity 
simulations will need high fidelity smoke 
representations while low fidelity simulations will 
need the opposite. Also, cloud behavior must be 4- 
dimensional (i.e., sensitive to spatial and temporal 
variations in atmospheric conditions, if they exist). 

Authoritative. Each component must simulate the 
item it represents with sufficient fidelity to satisfy the 
smoke and obscurant community at all possible 
resolutions. 

Efficient. Smoke and obscurant modeling is 
computationally intensive and that burden has limited 
its utility in many applications. The simulation 
components must employ more efficient algorithms 
than those used today, particularly for modeling 
cloud behavior and obscurant effects. The use of 
neural   nets  and  related  technologies   should   be 
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exchange requirements among networked simulators 

Self-contained.   Developers   will   not   use   the 

applications. Consequently, they must be designed 
using accepted object-oriented techniques, which 
require them to encapsulate all characteristics and 
behaviors and expose a well-defined interface. 

HLA compliant. The simulation components must 
be developed in accordance with the HLA 
specification. They must be fully documented with 
federation object models (FOM) and/or simulation 
object models (SOM), as appropriate. The 
components must employ the simulation support 
services provided by the RTI. 
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ABSTRACT 

This paper describes an effort underway to create a large image 
set and corresponding target acquisition performance data for 
use in the calibration and validation of computational models of 
human visual processing in target detection tasks. A set of 1154 
images was created by digitally altering a base set of 44 images 
of nine types of vehicles in varied aspects and locations. The 
objective of the digital modification was to create systematic 
variation in luminance, color, contrast, size scale, and cue 
features. A target detection experiment with 21 human 
observers was used to collect human response data. Assessment 
of the data indicated that the digital manipulations introduced a 
greater amount of overall reliable variance in observer response. 

INTRODUCTION 

The past decade has seen the computational approach to 
modeling the human observer response advance and enjoy 
continued popularity. Theory has developed rapidly in the area 
of human visual processing, and this has led to the development 
of more and more sophisticated algorithms and corresponding 
computational implementations. A limiting factor in the wider 
acceptance of such models is the difficulty involved in 
empirical validation and calibration using human observer data. 

Currently, the validation and calibration (V/C) efforts of various 
models are relatively independent. A more integrated approach 
to V/C, using a common set of images and corresponding 
human response data would allow assessment and comparison 
of results across models, and would also reduce duplication of 
effort involved in ad hoc collection of human response data. 

In June of 1999 the NATO SCI-12 Working Group on 
Camouflage, Concealment and Deception Evaluation 
Methodologies held a workshop on Search and Target 
Acquisition (STA) Modeling. Participants in the workshop 
were provided with a copy of the TNO Search_2 image set, and 
the corresponding search performance data. The image set 
consisted of 44 images of 9 different types of military vehicles, 
taken at Hunter-Ligget, at ranges from 500 to 5,000 meters, at 

varying aspect angles and slide film camera using a lOx lens, 
then digitized at 6K by 4K resolution. The search performance 
data (response time and probability of detection) was collected 
in laboratory testing with 62 subjects using the projected slides. 
This data set provided a common basis to compare alternative 
search and target acquisition modeling and analysis methods. 

During the workshop, the researchers noted several 
characteristics of the data set that limited its usefulness for STA 
model calibration and validation: 

1. The vehicles did not contain significant variation in color, 
reflectivity or camouflage. The camouflage patterns 
painted on the vehicles were not discernible or effective at 
range. 

2. The images did not contain significant variation in overall 
scene luminance and contrast trasmittance. 

3. Most of the vehicles were easy to detect. Only 3 of the 44 
targets had probability of detection (Pd) below 0.5, and 
only 4 of the 44 had mean search time above 20 seconds. 
75% of the targets had Pd above 0.8 and search time below 
10 seconds. 

In short, the Search_2 stimuli did not contain sufficient 
variation, in either appearance or human response, to provide a 
robust calibration or validation of STA models. 

There are only a few widely available unclassified image sets 
that have accompanying human performance data, such as 
Search_2, and those that are available are not adequate for a 
robust calibration and validation. The use of a large data and 
image set, with widely varying image properties and human 
responses, would facilitate better model validation and 
calibration. Use of a robust common data/image set would 
facilitate model comparison, and would also reduce the burden 
of the V/C process on developers. This paper describes the 
development of a large data and image set with widely varying 
image properties and reliable human performance data. 
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STIMULUS GENERATION 

A set of 1154 images was derived by digitally altering the 44 
Search_2 images. The digital alteration followed 2 main 
principles: First, images were altered to produce structured 
variations in scene and target appearance. Second, alterations 
were performed to introduce greater range and variation in the 
human response variables, Pd and Td. 

These images were then cropped to 1080 x 720. The images 
were cropped so that no two images presented the identical 
scene, and so that the targets were equally distributed in the four 
quadrants of the image. Half of the images were flipped 
horizontally to further disrupt possible scene memory effects. 
The images were stored in high-resolution JPEG format. 

Image background characteristics were modified in the 
expanded image set with regard to overall color/luminance and 
image resolution. The color/luminance variations were 
performed as follows: 25% of the images were left at baseline 
(unaltered color/luminance appearance), 25% were darkened 
(50% brightness reduction), 25% were given artificial "haze" 
(50% contrast reduction and 50% brightness increase), and 25% 
were transformed into gray-scale (the color was removed). 
Resolution (i.e., a proxy for range/size scale) was manipulated 
as follows: 50% of the images were sampled at 1/2 the 
resolution of the Search_2 images and 50% of the images were 
sampled at 1/3 the resolution of the Search_2 images. 

Target appearance characteristics were modified in the 
expanded image set as well: in 27% of the images the baseline 
target appearance was unchanged, in 27% the targets were 
modified to reduce the target-to-background contrast by one- 
third, in 19% the targets appearance was modified to suppress 
specific cue features (e.g., by darkening glint facets, overlaying 
camouflage nets, etc.), and in 27% of the images the target was 
digitally replaced with an empty background to serve as "no 
target" controls. 

METHODS AND PROCEDURES 

Stimulus Presentation and Apparatus. 
The observer task in this experiment was detection given a cue 
to the target location. The observer was cued to the target 
location by a thin red circle approximated three degrees in 
diameter centered on the target. In the "no target" control 
images the circle was centered on a potential target location. (A 
subsequent narrow field of view search experiment is planned, 
using the same images but without the target location cue). 

The observers were instructed to respond to the question ("Is 
there a vehicle in the image?") using a four-choice menu: 

1 - a vehicle was DEFINITELY present; 

2 - a vehicle was PROBABLY present; 

3 - a vehicle MAY BE present; and 

4 - a vehicle was DEFINITELY NOT present. 

Response time and perceived target location (i.e., mouse click) 
were also recorded. The stimuli remained on the screen until the 
observer entered a response. There was no artificial response 
time window. 

Stimuli were presented on a Gateway2000 Pentium II with a 
17" EV700 display, driven by an ATI Rage graphics card set to 
24-bit color, 1280 X 1024 resolution. A custom stimulus 
presentation and data acquisition program was written in 
Microsoft Visual Basic 6.0, with a third-party add-on DLL for 
high-resolution, high-color JPEG presentation. 

Procedure. 
Twenty-one university students participated in this phase of 
experimentation. They were all screened for 20/20 near acuity 
and color vision problems. Observers were seated 60" from 
display and presented with the imagery. At this distance, each 
pixel subtended 0.01 degrees (well below visual spatial 
resolution). 

Observers reported on each of the 1154 images twice, once 
according to the manipulations described above and again at 
50% scale (which was handled on-the-fly by the presentation 
software to further increase the variability in appearance). At 
full scale, the images subtended 10.5 degrees by 7 degrees. 

Observers responded to each presentation with a mouse, by 
clicking an item on 4-point forced-choice rating scale (the item 
labels ranged from NO vehicle present to DEFINITELY a 
vehicle present). 

Trial order was determined by assigning stimuli to 4 
experimental blocks via a Latin square. Blocks were replicated 
across presentation scale (8 total blocks). Block order and 
stimulus order within block were randomized. 

Data Collection and Treatment. 

The independent variables recorded included the original image 
number, target treatment (baseline, low contrast, special 
variation, and no target), scene treatment (baseline, darkened, 
haze, and grey-scale), image sampling resolution (1/2 and 1/3 
original resolution), and presentation scale (full and half)- 
Dependent variables included the participants' response on the 
4-point rating scale, response time, and mouse position (XY 
coordinates in pixels). 

The rating scale data were compared against ground truth data 
to generate three hit rate (HR) and false alarm rate (FAR) pairs, 
which were then used in turn as three different points on a 
receiver-operating characteristic (ROC) curve for each of the 
1154 images. The three ROC points corresponded to different 
response biases. A HR/FAR pair corresponding to a 
conservative response bias was computed by counting 
"Definite" responses as a target present response. A moderate 
bias was computed by aggregating the "Probably" and 
"Definitely" responses, and a liberal bias was computed by 
counting "Maybe", "Probably", and "Definitely" against 
"Nothing." 

DATA ASSESSMENT 

The primary objective of this project was to create a large, 
varying image set with reliable and detailed human response 
data corresponding to each image. Assessment of the data on a 
descriptive level indicates that the objective was accomplished. 

Aggregating all manipulations by image number, the new image 
set had wide overall variation in observer ratings (ranging from 
0.7 to 2.9 on a 0-3 scale), and did not have ceiling or floor 
effects present in the TNO Search_2 data. 

The scene treatments chosen, on average, created a pattern of 
results consistent with expectations. Compared to baseline 

231 



scene characteristics, the effect of haze, darkening and 
eliminating color information all served to reduce observer 
ratings (they were less sure that targets were indeed present in 
target-present images). Target properties were consistent as 
well; reducing contrast, eliminating glints, etc., resulted in 
lower ratings. 

For example, Figure 1 depicts the ROC curve for two different 
target treatments for Image 38. The baseline target is shown in 
Figure 2, while Figure 3 depicts the same target with glint 
removed (Note: these figures were further manipulated for 
presentation in this paper, and did not appear to observers as 
they do in the figures). Using area under the ROC curve as a 
measure of observer sensitivity, it is easy to see that removing 
the glint (while that is a relatively small effect on overall target 
contrast) has a great effect on sensitivity. Note also that 
reducing the overall target contrast by 50% (not depicted) 
reduced target visibility, but not nearly as much as removing the 
glint did. 

! T-       -^» 

0.5 
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Reduced 
contrast 

"Lower bound 

' Variation 

0 FAR      0.5 
Figure 1. ROC curve for Image 3. Each point 

represents 21 observer responses. 

DISCUSSION & CONCLUSIONS 

Overall, the results from the experiment were very encouraging 
and consistent with expectations. The image set contained a 
wide variation in scene and target characteristics. Responses 
across observers were tightly grouped for each image, 
indicating low observer variance. The observer responses 
contained wide variation from image to image. These 
variations have not been analyzed in detail, but are generally 
consistent with the type of image manipulation (e.g., darkening, 
reducing contrast transmittance, reducing target contrast and 
removing color all reduced target detectability), and with 
previous test results using only the baseline imagery. 

Taken together, the image set and the perception test results 
constitute a large and robust data set for calibrating target 
acquisition models. They contain a wide variation in observer 
response, and systematic variation in image and target 
appearance. 

A search experiment on the same image set is underway. The 
phase II study will use the same independent and dependent 
variables, but stimuli will be presented without an annulus or 
other cues as to target location. This study will collect data from 
100 observers, screened for good vision and trained with regard 
to vehicle properties and response criteria. 
It is expected that the entire image set and accompanying search 
and detection data will be available for model validation in the 
Spring-Summer 2000 time-frame. 
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ABSTRACT 

The Law of Comparative Judgement (LCJ) is a 
psychophysical tool that can be used to scale complex 
phenomena that lack easily identified physical parameters. 
Target signatures represent such phenomena. In a 
demonstration exercise, a "search difficulty" value was 
found using the LCJ. These LCJ scale values were 
compared to search times and probabilities of detection 
from a search experiment run in the Netherlands. The scale 
values were not linearly related to search time and 
probability of detection, but correlated very well with the 
logarithm of mean search time (r = 0.936) and the cube of 
the number of correct responses (r = 0.954). A chi-squared 
goodness-of-fit test gave 94.6% confidence in the fit of the 
LCJ scale to the experimental data. While the LCJ results 
in a scale with no natural zero point and arbitrary units, this 
tool can be used to construct a standard scale. This paper 
illustrates how a standard clutter scale might be constructed 
using the LCJ. The LCJ could be a valuable tool in target 
signature evaluation either when used in conjunction with 
scaling equations that permit conversion to familiar 
quantities such as mean search time and probability of 
detection, by providing relative "search difficulty" values, 
or by making possible a psychophysically meaningful 
clutter scale. 

INTRODUCTION 

Today, there are many quantities that engineers and 
scientists want to measure in perceptually meaningful ways. 
For example, designers of military man-in-the-loop search 
and target acquisition systems, as well as engineers 
working on military signature suppression systems, want 
measures   of   effectiveness   that   are   psychophysically 

meaningful, repeatable, and correlate well with field 
performance. Such measures of effectiveness have 
frequently been surprisingly elusive. Target detectability 
and signature levels may seem like concrete, physically 
measurable quantities, but in truth they have much in 
common with such abstract concepts as beauty. 

Figure 1 shows a near-infrared scene. The upper image 
shows a tank profile that has been inserted into the scene. 
In the lower image, the tank is not visible at all. It is 
"perfectly camouflaged." However, most signature 
evaluation models and virtually all of the most widely used 
sensor models would say that the two tanks have exactly 
the same signature. This is because the only difference 
between these two target signatures is that the image pixels 
have been moved around. Averaged over the target, the 
histogram, contrast, variance, third-, fourth-, and fifth- 
moments are all the same. Only measures of effectiveness 
that can distinguish between the relatively large "blobs" in 
the lower image and the "salt-and-pepper" noise in the 
upper image can distinguish between the two tanks. Only a 
model that can determine that the tank in the lower image 
has the same "texture" as the background and that the edges 
are perfectly "blended" with the background while, at the 
same time, determining that these things are not true of the 
tank in the upper image, can accurately predict that a 
person will detect the target in the top picture and fail to 
detect the target in the lower one. 

Investigators around the world are trying to develop models 
that can make such distinctions. Many of these models, a 
type called "computational vision models," attempt to mimic 
various processes that are believed to take place in the human 
eye-brain system. This has been a daunting task, and none of 
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Figure 1 - Equal Signatures? Each of the pictures on the left shows a tank silhouette in a near-infrared scene 
(outlined to the right). The tanks have the same pixel intensity histograms and will give the same value for 
most signature metrics. Yet, psychophysically, these pictures are not equivalent. 

the computational vision models can really be considered 
complete, calibrated, and fully validated, although some of 
these models are validated for specific applications. 

While we don't yet have models that can accurately and 
reliably predict detection probabilities throughout the range 
represented by the two images in figure 1, there are reliable 
scaling methods that can help to provide the correct 
signature level figures-of-merit in a wide variety of 
situations, including those depicted in this illustration. 
These scaling methods can provide the psychophysical 
values with which modeled quantities must correlate. One 
such method is the Law of Comparative Judgement (LCJ). 
The LCJ permits us to assign a one-dimensional scale to 
complex phenomena such as target signature levels even 
though they may lack an easily identified set of physical 
attributes and may frequently be a matter of opinion. 

LAW OF COMPARATIVE JUDGEMENT 

Between 1925 and 1932, Louis Thurstone published 24 
articles and a book on how to construct good measurement 

scales. Today the name Thurstone is synonymous with 
scaling methods that result in equal-appearing intervals. 
One of his contributions to the field of psychology is the 
law of comparative judgement (LCJ). 

In the beginning, the LCJ was a psychophysical tool for 
determining discrimination thresholds and psychological 
equivalents of physically measurable stimuli. For example, a 
subject could be presented with a tone of a particular pitch, 
loudness, and duration, followed by a second tone of the same 
pitch and duration but not the same loudness. The subject 
could then be asked whether the second tone was louder or 
softer than the first one. In this way, investigators could find 
out how sound pressure translates into perceived sensations. 
However, the LCJ provides only indirect scaling. As direct 
means were devised for measuring the same phenomena, 
psychophysicists turned to these direct methods and the role 
of the LCJ was gradually eroded. However, abstract 
sensations (attitudes, opinions, and aesthetic values) provided 
no physically measurable qualities. Finally, the LCJ came to 
be primarily a means of characterizing abstract stimuli[l]. 
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Figure 2 - A Conceptual Psychophysical Scale. This drawing shows 4 stimuli on a hypothetical psychophysical 
continuum. The horizontal axis indicates the amount of an attribute (e.g. beauty) that each stimulus possesses. The 
vertical axis indicates the probability that the stimulus will be judged to lie at that point on the continuum at any 
given time. The regions where the areas under the curves overlap indicate possible inversions. 

The fundamental assumption of the LCJ is that when a 
person is presented with a physical stimulus, it elicits a 
psychophysical response, and that for any given stimulus, the 
response may vary from time to time and from individual to 
individual. Figure 2 shows a conceptual scale on which four 
stimuli (Si to S4) have been rated. For each stimulus, there is 
a distribution of responses, which has been assumed to be 
Gaussian. When the psychophysical values of two stimuli are 
sufficiently close together, their distributions will overlap as 
shown in the figure. Under such conditions, it will happen 
that, for example, S, will sometimes be judged greater than S2 

on the psychophysical scale, even though it is actually less. 
This is called an inversion. It is important to remember that 
inversions are not "errors" in the normal sense, but the result 
of random fluctuations in the relationship between physical 
stimuli and psychophysical responses. In the extreme, two 
stimuli may be so similar that people cannot distinguish one 
from the other. In such a case, we would expect that in a 
forced choice situation, people would be approximately 
equally likely to pick each of the stimuli and the probability of 
an inversion would be approximately 0.5. 

The LCJ is applied to data from paired comparisons in 
which people are asked to choose the stimulus that has the 
greatest (or least) amount of some attribute. For example, 
tones can be presented in pairs and the subjects could be 
asked which is loudest (or softest), higher (or lower) in pitch, 
shorter (or longer) in duration. Pictures can be presented in 
pairs and the subject can be asked to choose the one that is 
most beautiful, most relaxing, most representative of a place 
they would like to be, and so on. Samples of handwriting can 
be presented in pairs and the subjects can choose the one that 
is the most readable. 

There are many means of ranking stimuli. However, for any 
given pair of stimuli, the LCJ permits one to do much more 
than determine which stimulus has most of the attribute being 
judged. From the amount of overlap in the distributions 
(represented by the probability of an inversion) one can 
calculate the distance between the true psychophysical values, 
provided the stimuli are close enough together that inversions 
are not too rare.  Thus, inversions are a necessary feature of 

LCJ   data,   without   which   numeric   scales   cannot   be 
ascertained. 

As indicated above, people could be given many different 
tasks for the same set of images. If people were asked to 
choose the picture that represented the place they would most 
like to be, we would expect to get substantially different 
results than if we asked them to pick the one mat was the 
most depressing. Thus, instructions given to die subjects 
define a task to be performed and greatly affect the choices 
that are made. Similarly, if we ask our subjects to listen to 
two tones and choose the one that is higher in pitch, even 
rudimentary musical training could substantially change the 
results. Clearly, then, the training and instructions given the 
subjects can greatly affect the outcome of an LCJ assessment 
and must be carefully controlled. 

USING THE LCJ: A DEMONSTRATION 

Procedure 
We shall now demonstrate the use of the LCJ by applying it 
to a practical problem. This demonstration uses a set of 9 
images from the Search_2 database[2]. The file names of 
the images and some of their statistics are shown in table I. 
These particular images were chosen because they 
represented a wide range of signature levels as indicated by 
mean search time, because they represented a small subset 
of the targets (all being T-72, M-3, or M-60), and because 
they represented a broad spectrum of probability of 
detection. As will be discussed later, it was necessary to 
keep the set of selected images small. 

The images, which had been stored on a CD-ROM in 
photo-CD format, were read into Adobe PhotoShop® at 
resolution 5 (3072 x 2048 pixels) and printed 10.24 x 6.827 
inches (26.01 x 17.34 centimeters) on 8.5 x 11.0 inch white 
bond paper using a Hewlett-Packard color LaserJet® 
4500N printer. 

The subjects (observers) were 13 engineers, scientists, and 
technicians who work with such images regularly in the 
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Table I. - Statistics for Selected Search_2 images 

Search Time Nat. Log of Search Visual Lobe Correct Search 

Image Time Responses Difficulty 
(LCJ) Arith. Geom. Arith. Geom. Detect Identify 

Mean Mean Mean Mean 

ImgOOOl 14.6 10.1 2.6810 2.3125 0.84 0.06 52 1.6480 

Img0013 3.7 3.1 1.3083 1.1314 1.72 1.16 62 0.0000 

Img0015 12.4 9.6 2.5177 2.2618 0.29 0.14 36 2.1964 

ImgO021 15.1 10.9 2.7147 2.3888 1.71 0.29 48 1.3143 

Img0022 25.6 21.6 3.2426 3.0727 0.31 0.09 40 2.0914 

Img0031 3.5 3.1 1.2528 1.1314 1.65 1.08 62 0.0000 

Img0039 34.9 31.6 3.5525 3.4532 0.14 0.07 9 2.4224 

Img0042 5.8 4.9 1.7579 1.5892 0.35 0.35 62 0.4920 

Img0044 10.6 7.6 2.3609 2.0281 0.27 0.27 57 1.2000 

R  = 0.848 0.801 0.934 0.930 0.673 0.883 0.842 1.000 

R2 = 0.719 0.641 0.889 0.865 0.453 0.780 0.710 1.000 

context of search and target acquisition modeling and 
psychophysical evaluation. Prior to giving the images to a 
subject, the images were sorted into order by image number 
as indicated in table I. Each subject was told to re-sort the 
images into order from the one in which the target was 
easiest to find to the one in which the target was hardest to 
find. The subjects were not immediately told where the 
targets were in the images, but they were told that 
information was available when they wanted it. The results 
of their sorting are shown in table II. 

As previously mentioned, LCJ analysis is performed on 
data from paired comparisons. Furthermore, it is necessary 
that every stimulus be compared to every other stimulus. 
Thus, for n stimuli, the total number of comparisons is 

,o= n(n-l) 
(1) 

Since this number grows much more quickly than n, it is 
necessary to keep the number of stimuli in any 
measurement block relatively small to avoid fatigue among 
the subjects and to keep the quality of their responses high. 
At the same time, since inversions are necessary, it is 
important that stimuli not be too far apart on the 
psychophysical continuum. While it is possible to obtain 
meaningful results with as few as 5 well-chosen stimuli, 
most practical applications limit the number of stimuli to 
somewhere between 10 and 25. 

It was assumed that the subjects' judgements in a paired 
comparison evaluation would have been entirely consistent 
with their image collation order. Thus, it was assumed that 

any image in the sorted set would have been judged more 
difficult than any preceding image and less difficult than 
any later image in the set. This assumption was made 
because it is statistically most likely, even though 
inversions (inconsistencies) are common in practice. On 
this basis, each subject's ordering of the images was 
converted to a matrix in which a 1 in the i-th row and the j- 
th column meant that the i-th image was judged easier than 
the j-th image. Similarly, a 0 meant that the i-th image 
was judged more difficult than the j-th image. Table UJ 

Table II. - Image Collation Order (Raw Data) 

Person Easiest Hardest 

DT 31 13 42 21 44 15 22 1    39 

JeO 31 13 42 1 21 44 22 15   39 

BB 31 21 44 42 13 22 5 1    39 

DB 1 31 13 42 44 39 22 21    15 

DW 31 42 13 21 44 1 22 39    15 

JP 31 13 21 42 22 44 39 15      1 

GO 31 44 21 13 42 1 15 39   22 

JnO 31 42 13 21 44 1 9 22    15 

KU 31 13 42 21 1 44 15 22   39 

RD 31 13 42 44 15 22 21 1    39 

MT 31 13 42 15 21 44 22 39     I 

JK 31 13 1 44 42 39 15 22   21 

MF 31 13 42 1 44 39 22 21    15 
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Table m. -Tally Matrix for subject DT. 

1 • first image preferred.     0» second image preferred. 

Table IV. —Tally Matrix from 9 images sorted by 13 
people (Frequency of preferring first image). 

Second Image Second Image 

u 1 
E 

R im 

LL. 

1 13 15 21 22 31 39 42 44 

n 
8P 
E 

E 
u- 

1 13 15 21 22 31 39 42 44 

1 0 0 0 0 0 0 0 0 1 0 1 8 4 8 1 11 2 5 

13 1 0 1 1 1 0 1 1 13 12 0 13 11 13 0 13 10 11 

15 1 0 0 0 1 0 0 0 15 5 0 0 3 6 0 7 0 1 

21 1 0 1 0 1 0 0 1 21 9 2 10 0 9 0 10 3 8 

22 1 0 0 0 0 0 0 0 22 5 0 7 4 0 0 8 0 1 

31 1 1 1 1 1 0 1 1 31 12 13 13 13 13 0 13 13 13 

39 0 0 0 0 0 0 0 0 0 39 2 0 6 3 5 0 0 0 0 

42 1 0 1 1 1 0 0 1 42 11 3 13 10 13 0 13 0 10 

44 1 0 1 0 1 0 0 0 44 8 2 12 5 12 0 13 3 0 

illustrates this process, showing the matrix for the first 
subject listed in table II. 

The matrices for all of the subjects were added, yielding 
the matrix in table IV. This matrix was the input to a 
computer program that applies the LCJ algorithms and 
produces scale values[3]. For the purposes of this paper, 
the program will be considered a "black box" with the 
details of the algorithms considered to be beyond the scope 
of the present discussion. The interested reader may wish 
to refer to Copeland and Trivedi[4], Torgerson[5] or 
Gescheider[6], or contact the author of this paper. 

Results 

LCJ Search Difficulty 

The "search difficulty" values were calculated as described 
above and are included in the last column of table I. The 
last two lines of this table show the correlation (r and r2) 
between the independent variable (LCJ "search difficulty") 
and the various dependent variables (metrics) that have 
been selected. One will observe that the search difficulty 
correlates very well with several of the metrics, particularly 
with the natural logarithm of the mean search time (either 
geometric or arithmetic mean). It seems appropriate to 
point out that scatter plots generally show very systematic 
relationships between the search difficulty and most of the 
selected metrics. However, some of the relationships are 
decidedly non-linear, causing systematic error when fit to 
straight lines. Thus, we find a substantially higher 
correlation between the search difficulty and the logarithm 
of the arithmetic mean search time (r = 0.934) than between 
search difficulty and the mean search time itself (r = 0.848). 
In the same way, the relationship between search difficulty 
and probability of detection is also non-linear (see figure 4). 

While table I does not have columns for the square and the 
cube of correct responses, the correlation coefficients are r 
= 0.923 for the square and r • 0.954 for the cube when 
compared to the search difficulty (LCJ). The graph in 
figure 3 shows the effect of search difficulty (as measured 
in this LCJ evaluation) on the logarithm of search time. This 
graph appears to be linear because the vertical scale is 
logarithmic. The graph in figure 4 shows the effect of search 
difficulty on the number of correct responses. The trend line 
shown is a quadratic function with r = 0.939 

Goodness of Fit 

Testing die goodness of fit between the original data and the 
LCJ scale values (in this case, search difficulty) is a six-step 
process. One must first create a matrix D in which the 
diagonal elements are zero and for each off-diagonal element, 

di.j = Si-Sj (2) 

where dy is the element in row i and column j, S; is the scale 

2.5 1.0 1.0 1.5 2.0 

Search Difficulty (LCJ Seal*) 

Figure 3 - Effect of search difficulty on search time 
Nine images from the Search_2 database (r = 0.934) 
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1.0 1.5 2.0 

Search Difficulty (LCJ Scale) 

3.0 

Figure 4 - Effect of search difficulty on correct responses. 
Nine images from the Search_2 database (r = 0.939) 

value for stimulus i, and Sj is the scale value for stimulus j. 
Because the LCJ scale values produced above were chosen to 
use one unit normal standard deviation as the scale units, dy is 
the unit normal standard deviate for the separation of the 
stimulus mean response values. For example, since Si = 
1.6480 (the scale value for ImgOOOl) and S3 = 2.1964 (the 
scale value for Img0015), then di, 3 = -0.5484 and d3i , = 
+0.5484. 

The second step is to produce a matrix Z in which each 
element Zj, j is the predicted probability of choosing stimulus i 
over stimulus j. These probabilities are obtained either from 
statistical tables or by calculating 

ZU' J-OO 

-x-n 
(3) 

Next, we calculate expected frequency of occurrence for 
choosing each stimulus i in preference to every other stimulus 
j. The elements of this matrix (E) are found by 

eu = Round ( nu ZIJ)     W 

where n;, j is the total number of times stimulus i is paired with 
stimulus j for all observers. Normally, this number is the 
same for all stimuli, in which case all nj, j can simply be 
replaced by n. For our example, the expected frequency of 
occurrence is given in table V. 

The fourth step is to calculate 

2_y(Oi,i-eu) 
(5) 

where the values O;, j are the observed frequencies of 
occurrence from table IV. The upper limit of the summation 
is 

k(k-l) 
m =  

2 
(6) 

where k is the number of stimuli in the experiment However, 
the number of elements in the matrices O and E is k2, and we 
are not using all of them, so it is necessary to define the 
selection process. In this case, we will select Oi,j and e^ only 
if Zj, j k 0.5. Furthermore, when z;, j = 0.5, then Zj, | is also 0.5 
and Oij - ej, j = Oy - e^,- = 0. In these cases, we will use either 
of these differences, but not both. For our example, %2 = 
16.3335. 

We shall next calculate v, the degrees of freedom as 

v = m - k (7) 

where m comes from equation 6 and k is again the number of 
stimuli. In the example, v = 27. 

Finally, the goodness of fit is determined by integrating the 
chi-squared distribution from 0 to %2 wi• v degrees of 
freedom to obtain the probability of error. (The confidence is 
1 minus the probability of error.) Normally one would not 
perform the integration, but use tables instead. However, the 
most common chi-squared tables in textbooks and most other 
sources only go up to 30 degrees of freedom. In our current, 
very limited case, v = 27. With 10 stimuli, the degrees of 
freedom increase to 35, and with 25 stimuli, it would be 275. 
It is clear that tables will normally not serve our needs. 

There are at least two solutions to this dilemma. Available 
computer software can be used to calculate the probabilities. 
If you lack such software, the NCSS Probability Calculator[7] 
should serve your needs and is available free over the internet. 
Also if v > 30, the formula 

d=pJ2-42Vl (8) 

may be used to calculate the normal standard deviate d 
associated with %2 and v[8]. You may then refer to widely 
available tables for probabilities associated with the normal 
(Gaussian) probability density function. Such tables are 
found in statistics textbooks and standard mathematical 
tables. It may be sufficient to refer to table VI, which gives 

Table V. - Expected Frequency of preferring first 
image (13 people). 

Second Image 

1 1 
C 
U. 

1 13 15 21 22 31 39 42 44 

1 0 1 9 5 9 1 10 2 4 

13 12 0 13 12 13 7 13 9 12 

15 4 0 0 2 6 0 8 1 2 

21 8 1 11 0 10 1 11 3 6 

22 4 0 7 3 0 0 8 1 2 

31 12 7 13 12 13 0 13 9 12 

39 3 0 5 2 5 0 0 0 1 

42 11 4 12 10 12 4 13 0 10 

44 9 1 11 7 11 1 12 3 0 
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Table VI - Probabilities associated with key values 
of the normal standard deviate. 

D Probability of error Confidence 

-1.282 0.10 0.90 

-1.645 0.05 0.95 

-2.326 0.01 0.99 

-2.576 0.005 0.995 

-3.090 0.001 0.999 

Source: NCSS Probability Calculator 

five key values of d, the probability of an error, and the 
corresponding confidence levels. 

In the case of our example, equation 8 cannot be used 
because we have only 27 degrees of freedom. The NCSS 
Probability Calculator gives 0.054 for the probability of 
error and 0.946 for the confidence. 

Repeatability 
The group of observers in our demonstration sorted 5 of the 
images several days prior to the evaluation recorded in 
table II. The data was processed as described above and 
search difficulty values were calculated. When the scale 
values from the two sorting exercises were compared for 
these 5 images, the slope of the regression line was 0.997 
and the correlation coefficient was r = 0.980. This indicates 
that the results were highly repeatable. However, since the 
process was not repeated with a different set of subjects, we 
cannot safely draw any conclusions about the performance 
of any other group of individuals or the population as a 
whole. 

Discussion 
The LCJ evaluation that was outlined above was relatively 
quick and easy compared to a properly run search 
experiment. At the same time, it correlates very well with 
search time and probability of detection. It would appear to 
be a highly effective tool for determining the relative 
strength of target signatures. At the same time, the LCJ has 
certain limitations. 

The LCJ search difficulty scale that we obtained above is 
a psychophysical scale with no natural zero point and units 
that have no obvious relationship to useful quantities such 
as average time required to detect the target or probability 
of detection. Furthermore, the scale will change from one 
experiment to the next with no common reference. Thus, 
one might easily ask what advantage there is to such 
measurements. Is there any reason to use the LCJ in 
preference to other psychophysical measures or methods? I 
would like to suggest that there are numerous 
circumstances that might lead one to use the LCJ either in 
preference to other methods or in conjunction with them. 

First, it is necessary to realize that the lack of a natural 
zero and a physically meaningful scale are really not 
significant problems. Detection time and probability of 
detection, while seemingly more meaningful are actually 
relative as well. The skill of the observers, the conditions 
under which the images are viewed, and many other 
variables in addition to the images themselves, will all 
affect the detection time and probability of detection. 
Observers who are more or less skilled, more or less 
effectively trained and motivated, or who are viewing 
images of varying quality and magnification will give 
varying results. Thus, in either case, two things are 
required: calibration standards and conversion formulas. 

For example, in the case of the nine stimuli in the 
exercise above, the conversion from search difficulty to 
arithmetic mean search time in seconds can be expressed as 

t * 5.21 e°-82s + 4.78. (9) 

where / is time in seconds, s is the search difficulty, and e is 
the base of the natural logarithms. However, one must bear 
in mind that this formula applies only to the relationship 
between the search difficulty as measured by the data from 
the 13 Night Vision employees and search times for the 62 
observers in the TNO test. It is likely that the 13 Night 
Vision employees could predict the search time on other 
images in the Search_2 set. It may also be that search times 
from the Search_2 data could be used to predict the search 
difficulty for other images. However, he who would extend 
this relationship to search difficulty values for other images 
sorted by other people or to search times in other search 
experiments would be making a potentially serious error. 

Even so, all is not lost. Just as there was a day when two 
marks were scribed on a platinum-iridium bar to define a 
meter, other standards of measurement have been defined 
before and since. In the same way, useful perceptual 
standards can also be defined. However, rather than 
continue with search time and search difficulty, let us 
examine another phenomenon - visual clutter. 

USING THE LCJ: A CLUTTER SCALE 

The LCJ is primarily a tool for building measurement 
scales. Thus, we examine clutter as an example of an 
important quantity for which we have no accepted scale. 
Our purpose is to see how the LCJ could be used to build a 
standard reference scale. This relates to our primary topic 
of target signature evaluation in that target signatures must 
be evaluated in the context of a background and clutter is 
one of the most fundamental ways of characterizing 
backgrounds. 

Definition of Visual Clutter 
Clutter has been defined as "scene elements similar enough 
in size and contrast to the [target] that each one has to be 
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considered in detail as a potential target"[9]. The concept 
of clutter is pervasive and generally describes distracting, 
annoying, and unwanted signals or returns when any of a 
wide variety of sensors is used. It is often discussed but 
seldom precisely defined. We shall use the phrase "visual 
clutter" in this paper to apply to any situation where there is 
a person using their eyes to examine a scene in which there 
is clutter, whether they are using "bare eyes" or an imaging 
sensor. 

For many years, investigators have known that an 
observer's performance depends on many factors, including 
clutter. SchmiederflO] has probably been more influential 
than anyone else in the quest to subject visual clutter to 
quantification and analysis, but the proliferation of clutter 
metrics is testimony to the fact that none of the metrics are 
convincingly successful. However, the LCJ could be used 
as a tool in establishing a clutter scale that would be 
perceptually meaningful, extensible, and widely applicable. 

Establishing a Unit of Visual Clutter 
The first step in establishing a perceptual image clutter 
scale would be to select a set of images exhibiting a wide 
range of clutter levels. In order to maintain generality, they 
should represent numerous locales and clutter types. Since 
many feel that clutter must be understood in the context of 
the target, the set should include images with targets as well 
as images without targets. Initially, it would probably be 
satisfactory to have only military ground vehicles as 
targets. 

From the initial set of images, a training package should 
be prepared so that observers can be taught what clutter is 
and so that they can become familiar with the size scales of 
the images in the set. This will help to make results 
repeatable, a necessary feature. A set of test stimuli would 
also need to be selected and should be distinct from the 
training set. 

A pool of observers would also be required. The pool 
would need to be large enough that aberrant results from 
any one observer would have negligible effect on the 
results. Experience has indicated that at least 25 observers 
would be desirable. The observers would first be trained 
using the training set along with appropriate commentary. 
When they were fully trained, they would participate in a 
paired comparison evaluation of the test images. Their task 
would be to choose the image in each pair that had the most 
(or least) visual clutter. 

When all observers had completed the paired comparison 
evaluation of the test set, LCJ statistical analysis would be 
used to obtain the perceptual image clutter scale. At this 
point, the scale would be arbitrary. Probably the image that 
had the lowest clutter would be selected as the zero point. 

From the test images, a subset would be selected as a 
reference set. Images that had the same, or nearly the same 

perceptual image clutter values would be culled. An 
attempt would be made to select a relatively small number 
of images that spanned the entire scale, and were evenly 
distributed between the extremes, but with no gaps. It 
would be best if about 1 unit normal standard deviation 
separated the individual images in the reference set. 
Probably 1 unit normal standard deviation would be 
selected as the scale unit. 

It would be highly desirable to repeat the evaluation with 
a second pool of observers in order to establish whether or 
not the scale is indicative of a broader population. 
Actually, several replications would be ideal. If this could 
be done, the first replication should be with a group as 
similar to the first one as possible. Thereafter, greater 
liberties could be taken with the makeup of the observer 
pool in order to observe how robust the scale actually was. 

Evaluating Clutter Levels 
Having established a clutter scale for one set of images, one 
would naturally want to determine where other images were 
on the same scale. This could be done in any of at least 3 
ways. 

Quick Estimate 

For a quick estimate of the clutter level in any image, 
anyone who was well versed in the perceptual image clutter 
scale could simply compare a new image to the reference 
images. Assuming there was nothing unusual about the 
image, they would be able to tell where it belonged on the 
scale, probably within about half of a unit. Tests of this 
method could be verified by one of the other methods to 
determine reliability. 

LCJMethod 

A second method of determining the clutter level in one or 
more images would be to mix new images with some or all 
of the reference set and perform a paired-comparison LCJ 
evaluation as described above. The results from the new 
evaluation would be used in conjunction with a linear 
transformation of scale values that would minimize the 
error for the reference images. This linear transformation 
could be determined by simply doing a linear regression 
between the standard values for the reference images and 
the values obtained for them in the new evaluation. The 
correlation coefficient obtained would be a measure of the 
reliability of the values assigned to the new images. 

Jury Method 

A third method would be to have a panel of "experts" who 
were all familiar with the perceptual image clutter scale 
assign clutter values to each of the new images. This would 
be more reliable and precise than the quick method above at 
the same time that it would be quicker and easier than the 
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LCJ method. The major drawback to this method would be 
that there would be no ready means of evaluating the 
reliability of the values assigned to the new images. 

Extending the Scale 

If this methodology were employed, we might in time 
encounter clutter levels that were beyond the limits of the 
original set. There is nothing about the methodology 
described above that limits it to interpolation alone. In 
time, more reference images could be added to the set by 
the LCJ method outlined above. The only requirement in 
extrapolating beyond the original set is that no new set of 
images can be added if any continuous subset lies more 
than about one standard deviation beyond either end of the 
scale (depending on the number of observers in the pool). 
However, in such a case, selection of enough images with a 
variety of intermediate clutter levels should provide the 
necessary continuum. 

Observer Pools and the Population 

We previously alluded to the fact that different populations 
might give different results. If this methodology were 
adopted for establishing a clutter scale, it would be wise to 
determine how stable the results were across these various 
populations. For example, it might be that trained military 
personnel would not give the same results as civilian 
clerical employees. On the other hand, since we are only 
asking individuals to make relative judgements ("Which 
image has the most clutter?") as opposed to quantitative 
judgements ("How much clutter does this image have?), we 
may find that the numbers obtained are quite stable over a 
broad spectrum of the human population. If the latter were 
true, it would be fortunate and knowing that it was true 
would permit various economies since trained military 
personnel are not always readily available at research 
facilities. At the same time, this cannot be assumed. 

Analytical Methods 
Naturally we would prefer to have analytical means of 
determining clutter levels rather than rely on 
psychophysical measures. However, we must remember 
that the human eye-brain system is most often the standard 
against which performance is rated. Having a reliable scale 
would be of great value in testing analytical methods 
because investigators would know what the "correct 
answers" are. Even if analytical methods were only able to 
tell which reference image a new image was most like, that 
would be a step in the right direction and eventually it 
could eliminate the need for paired comparisons and juries. 

CONCLUSIONS 

The Law of Comparative Judgement (LCJ) has great 
potential for helping us evaluate target signatures. There 
are two ways in which this potential might be realized. 
First, the LCJ can provide relatively quick, easy answers to 
questions that involve a complex set of variables such as we 
encounter when evaluating target signatures. It has been 
shown, for example, that the LCJ can give good estimates 
of mean search time using a methodology that is much 
quicker and easier that a traditional search experiment. 
When relative answers such as "Which is better?" and 
"How much better is it?" will suffice, or when there is a 
known relationship between LCJ scale values and 
important measures of effectiveness, the LCJ can be a 
highly effective tool. The LCJ can also be used to build 
scales for qualities that are difficult to quantify. This is 
perhaps where its greatest potential lies. To explain how 
this works, a scheme has been outlined for creating a 
perceptual image clutter scale. Such a scale could provide 
important benchmarks in an area of image understanding 
that has long been in need of an anchor. Both of these 
applications could contribute greatly to the important area 
of target signature evaluation, search, and target 
acquisition. 
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ABSTRACT 

This paper presents a mathematical model, which includes a 
closed-form equation (the ABCt law) that generates the entire 
Blackwell-McCready (BM) threshold data set. It derives 
relationships among the four fundamental parameters of foveal 
vision: target area A, background luminance B, threshold 
contrast C and stimulus presentation time t. It shows that 
graphs of log (t) as a function of log (ABC) are hyperbolas 
whose asymptotic regions are related to the well-known laws 
of Weber-Fechner and Bloch. It unifies important 
relationships associated with target/background scene 
parameters as they relate to the human foveal vision process. 
The constants associated with the simple empirical laws of 
Ricco, Blackwell, Weber-Fechner and Bloch can easily be 
obtained for a large range of target /background conditions 
and stimulus presentation times. Conditions for the most 
efficient stimulation of the human visual system are quantified 
and expressed in terms of the total energy for specific 
detection tasks. 

1. INTRODUCTION 

Along the visual axis, intersecting the retina, there is a small 
area on the retina, the fovea, which provides the greatest 
visual acuity and spatial resolution. Covering about one 
degree of visual angle in diameter, the fovea contains the 
greatest concentration of cones, but no rods. The BM data set 
relates to this part of the human vision system. 

In an earlier paper1'2, a hyperbolic curve fitting algorithm was 
derived for the BM data set. It accurately generates the 
threshold contrasts (C) of the circular targets for a wide range 
of target areas (A) and uniform background ambient 
luminance (B) for a given stimulus duration time (t). 

Typical displays of the BM data show plots of log C as a 
function of log (A) or log (B) with the presentation time t held 
constant, as shown in Figures 1 and 2 for a presentation time 
t = 1/3 second. The circular markers represent points from the 
BM data set and the solid lines were generated from the 
hyperbolic curve fitting algorithm'*. 

-tt 

Log B (B in ft-L) 

Figure 1. Log C versus Log A for t = 1/3 second. 

Log B (B in ft-L) 

Figure 2. Log C versus Log B for t = 1 /3 second. 

243 



Previous hyperbolic curve fitting algorithms were developed 
for all three 2-D projections of the BM data set with constant 
presentation time t. Each geometric projection exhibited a 
number of interesting characteristic features of the human 
visual system. A significant accomplishment in the previous 
work was the recognition that the Ricco and Blackwell laws 
can be combined to give what we referred to as the ABC law 
for foveal vision. This paradigm stated that the product of A, 
B and C was a constant for small target areas (A< 6 arcmin2) 
and low ambient light levels (B < 0.1 ft-L). Figure 3 is a 
graph of the ABC constant as a function of log (t). It was also 
shown that the largest variations in human performance, as a 
function of B, occurred during the time interval before dawn 
and after dusk. A subsequent paper3 extrapolated these results 
through a redefinition of ambient luminance to real world 
scenarios. 

Our continued efforts to characterize and further analyze the 
BM contrast discrimination data set has led to the discovery of 
a closed-form equation (the ABCt law) which generates the 
entire BM smoothed threshold data set. In particular, ft shows 
that plots of log t versus log ABC are hyperbolas (one branch) 
with one vertical asymptote and the other with a slope of-1, 
as shown in Figure 4. The asymptotic regions are related to 
the well-known laws of Weber-Fechner and Bloch. The ABCt 
law unifies and quantifies many of the important 
interrelationships associated with the physical environment as 
they relate to the foveal vision process. It unifies under a 
single formalism the empirical laws of Ricco, Blackwell, 
Weber-Fechner and Bloch. The associated constants with 
these four laws are obtained for a wide range of 
target/background parameters and stimulus presentation times. 
A dimensional analysis of the product ABCt shows it 
corresponds to the minimum energy required to detect the 
target. This formalism is useful for predictive models and 
provides quantitative estimates of human performance 
parameters over a wide range of conditions. It should be 
relevant to many applications of tactical interest and serve as 
a performance baseline for more advanced computational 
vison models. The integration of the effects of light energy 
over stimulus area (spatial summation) and over time 
(temporal summation) can also be quickly classified and 
quantified. 

Blackwell=s law (CB = constant) is applicable for low 
ambient 
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Figure 3. The ABC constant versus log t for B <0.1 ft-L and 
A < 6 arcmin2. 

B= 10 ft-L 

-3.0 "L 

Log ABC (A in arcmin , B in ft-L) 

The Early Empirical Laws 

A number of simple empirical laws have been formulated to 
describe human visual system performance. Ricco=s law (CA 
= constant) is relevant for small targets with large relative 
contrast values. It results from the fact that diffraction effects 
dominate for object sizes less than some critical angle. 

Figure 4. Log t versus Log ABC for B = 10 ft-L. 

luminance levels, and ft illustrates the high, relative sensitivity 
of the foveal vision system during ambient lighting conditions, 
which typically occur before dawn and after dusk.   The 
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Weber-Fechner law (C = constant) applies for large, highly 
resolved targets when observer thresholds are nearly constant 
and independent of size or range. This phenomenon is 
indicative of noise limiting performance of the human 
observer and relatively independent of the target 
characteristics A and C. Bloch=s law, which applies for short 
stimulus presentation times, states that the product of intensity 
and time (ABCt) is a constant for t less than some critical 
value, and it is proportional to some photochemical effect in 
the human vision system. 

In each of these simple paradigms the product of two 
parameters is constant for some range of asymptotic 
conditions. Although the ABCt law provides a means to 
obtain these constants, it can also provide numerical values for 
describing the entire range of target/background variability 
affecting human foveal vision. 

Units 

Although target areas have been expressed in arcmin', they 
can easily be converted to m2 with the knowledge that the BM 
observers were 10.25 feet from the target. Background 
luminance levels are expressed in foot-Lamberts with 1 ft-L = 
3.426 cd/m". Threshold contrast is the ratio of the difference 
between target luminance and background luminance to the 
background luminance that elicits a response from the vision 
system. Therefore, the product ABC has units of light 
intensity. If target area is expressed in m" and luminance in 
cd/m2, the units for the product ABC are candelas (cd). For a 
point source, 1 cd = 1 lumen per steradian. Since the lumen 
is a unit of light power, the product ABCt represents the 
minimum energy required by the foveal vision system to detect 
the BM targets. 

2. BACKGROUND INFORMATION 

Comprehensive experimental data sets for human observers 
which relate scene luminance, visual contrast, target 
dimension and stimulus presentation time are relatively few in 
number. Blackwell published several experimental studies4' 
beginning in the World War II time period. His earliest 
work4, generally known as the Tiffany data set, was intended 
for use in military applications with less than maximum 
visibility or relative target/background contrast. The 
Blackwell-McCready5 (BM) data set attempted to provide the 
first comprehensive body of data in which background 
luminance level, target size and duration were all studied over 
wide ranges of practical interest. The data was collected using 
procedures that allow the analyst to convert the threshold data 
to various probabilities of detection levels. The Tiffany data 
consisted   of  three   basic   studies   conducted   over   a 

comprehensive range of background luminance and target 
size. The first and second perception experiments were 
forced-choice detection tasks, which required observers to 
search for circular targets in a uniform background over a six- 
second-presentation time. The third experiment used bright 
targets in known positions for presentation times necessary to 
obtain maximum detection probabilities. 

The basic 1958 BM data set was collected from two Ahighly 
motivated and experienced observers!?. The original data 
consists of 81,000 observations in 162 experimental sessions. 
Target diameters ranged from 0.802 to 51.2 minutes of arc. 
Background luminance values varied from 0.001 to 100 ft-L 
which corresponds to the range of the average pupil diameter 
of the human eye (2.5 mm to 7.5 mm)6. Unlike the Tiffany 
data sets, presentation times were varied from 0.001 to 1 
second and more attention was given to resolving fixation 
concerns. The BM targets always appeared in a known 
location at the center of the screen where the observers 
initially fixated their foveal vision. Associated with each value 
of A, B and t was a contrast threshold value C corresponding 
to a detection probability of 0.5. After a smoothing process, 
the smoothed threshold data consisted of 546 threshold 
contrasts corresponding to 13 target areas, 6 background 
luminance values and 7 presentation times. Since the product 
of ABC does not change for target areas less than six arcmin2, 
126 of the BM threshold contrasts are redundant. The ABCt 
law refers to the remaining 420 threshold contrasts. 

3. HYPERBOLIC CURVE ALGORITHM 

Basically, the ABCt law is the equation of a family of 
hyperbolas. Its conception was prompted from an analysis of 
plots like those shown in Figure 4. Each plot is for a specific 
value of A and B. The markers represent values from the BM 
data set and the solid curves were generated from the ABCt 
law. A few fundamentals involved in the derivation of the 
ABCt law are given below. Equation 1 is the simplest 
mathematical form for a hyperbola with foci along the y-axis, 
semi-axes a and b and center at the origin of the (x, y) 
coordinate system. 

a2    b2 (1) 

The plots in Figure 4, however, appear to be hyperbolas 
described by Eq. (1) in a coordinate system which has been 
translated and rotated. This is illustrated in Figure 5 which 
shows the 2-D, geometric transformation between the (x, y) 
and (x1, y") coordinate systems.    Equations (2) and (3) 
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represent a counterclockwise rotation (6) and a translation of 
the origin to the point (h, k) 

x' = (x-h) cos 9 + (y-k) sin 9 
y = (y-k) cos 9 - (x-h) sin 6 

(2) 
(3) 

Equation 1 is a special case of a general equation of second 
degree: 

Ax2 + Bxy+Cy2 + Dx + Ey + F = 0 

where B2 - 4AC > 0. In the (x'.y1) coordinate system: 

A' xa + B' x' y + c y2 + D' x'+ E' y + p - o 

where 

A' = b2 sin2 6 - a2 cos2 9 
B' = (a2 + b2)sin29 
C = b2 cos2 9 - a2 sin2 9 
D' = 2b2ksin9-2a2 hcos9 
E' = 2b2kcos9 + 2a2hsin9 
F = b2k2-a2h2-a2b2 

(4) 

(5) 

(6) 
(7) 
(8) 
(9) 

(10) 
(11) 

The asymptotes in the (x=, y=) coordinate system are 
characterized by: 

y-     = 
(acosfl - bsin0)x'   + (ah - b k) 

(12) 

a sin 6 + b cos 

y'  = 
(a cos 6 + b sin 6) x'   + (a h + b k)      (13) 

a sin 0 - b cos 8 

If m, and m2 are the slopes of the asymptotes, then we get 

(14) 

tan 20 = 
ml   +  m2 B1 

mj m2  -  1 C   - A' 

4. TheABCtLaw 

Since plots of log t versus log ABC are hyperbolas (one 
branch) with one vertical asymptote and the other with a slope 
of-1, according to Eq. (14), 9 = 67.5E and it can be shown 
that b = a tan (67.5E). Using these two results and Eqs. (5) to 
(8) yields AN = BN and CN = 0. Hence, an equation that will 
generate the entire BM smoothed threshold data set is of the 

I(h, k) 
II       ] ' ( 

J_I—i i i i 1 • •' i 

Ky   5 

: (0,0 ^CA 

- X 

- 

form 

A' (xc + x' y1) +D' x'+ E' y + F = 0 
{target area A > 6 arcmin2} (15) 

t  , 

-1 

WD     , 
o   -2 

-3 

-4 

Log ABC 

Figure 5. Transformation of coordinates. 

where the coefficients are given by Eqs. (6) to (11) and the 
coordinates (x1, y") correspond to (log ABC, log t). The 
restriction A > 6 arcmin2 is founded on the feet that plots of 
log t versus log ABC for values below this limit are all 
redundant. Eq. (15) is the ABCt law. Inspection of Eqs. (6) 
to (11) shows mat the only parameters to identify are a, h and 
k. An analysis of the entire BM data set shows that each 
parameter, a, h and k can be expressed as a function of the 
target area A and the background luminance B. Plots of a, h 
and k versus log A are also hyperbolas; however, one 
asymptote is horizontal and the other has a negative slope 
which depends on the ambient luminance B. A pictorial 
representation of this scenario is shown in Figure 6. This 
suggests that the a, h and k parameters can be expressed in the 
form of Eq. (5), where the coordinates (x', y) now correspond 
to (log A a), (log A, h) or (log A, k). 

For distinctness, all parameters relating to the (log A, a) 
hyperbolas will have the subscript Al@, all parameters 
relating to the (log A, h) hyperbolas will have the subscript 
A2@ and all parameters relating to the (log A, k) hyperbolas 
will have the subscript @3A. For example, the parameters A, 
B', C, D', E', F, a, b, h, k, and 9 of Eqs. (5) to (11) correspond 
to A',, B',, C,, D',, E'i, F,, a,, b,, h,, kh and 9, of the (log A, 
a) hyperbolas. 

Since one asymptote of the a, h and k parameter hyperbolas is 
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horizontal, b„ = a„ cot 6„ and A„' = 0. Hence, analogous to Eq. 
(5) 

B'nx'y + Cny
2 + D,

nx' + E,
11y' + Fn = 0 (16) 

where, n = 1,2, 3; x' = log A and y" = a, h, k . 

Through a comprehensive curve-fitting procedure, the 
parameters a„, h„, ko and 0„ were adequately described as 
given below. Using z = log B, the a, h and k parameters are 
described by 

a, = 0.004, b, = ai cote, 
h, = 0.016788 z5 - 0.006235 zA - 0.118709 z3 + 0.149452 z2 

- 0.042503 z + 0.898705 
k, = 0.000592 z5 - 0.007458 z4 - 0.034943 z3 + 0.037570 z2 

+ 0.186497 z +0.279860 
6, - -0.082083 z5 - 0.320417 z4 + 0.177917 z3 

+ 1.570417 2? + 0.814167 z+ 180.4200 

a2 = 0.020, b2 = a2 cot 67 
h2 = 0.014778 z5 + 0.040227 z4 - 0.066438 z3 - 0.154833 z2 

+ 0.048312 z+1.175540 
k2 = -0.003207 z5 - 0.006359 z4 + 0.004473 z3 

- 0.060491 r - 0.162769 z - 0.179468 
02 = -0.025000 z5 - 0.208333 z4 - 0.383333 z3 + 0.78333 z2 

+ 2.633333 z+192.300 

a3 = 0.192, b3 = a3 cot 03 

h3 = 0.002347 z5 + 0.016055 z4 + 0.023844 z3 

- 0.044514 z2 - 0.089004 z + 0.993574 
k3 - 0.001136 z5 + 0.001543 z4 - 0.020823 z3 

- 0.105677 z2- 0319653 z + 1.164966 
63 = -0.009167 z5 - 0.071667 z4 - 0.100833 z3 

+ 0.441667 z2 + 1.240000 z + 198.800 
(17) 

Example 

The following example uses the ABCt law (Eq. 15) to 
calculate the threshold contrast for a target area A = 78.54 
arcmin2, a background luminance B = 10 ft-L and a 
presentation time of 1/3 second. From Eq. (17): 

a, = 0.004, h, = 0.89750, k, = 0.46212,0, = 182.58, 
b, =0.089 

a2 = 0.020, h2 = 1.05759, k2 = -0.40782,02 = 195.10, 
b2 - 0.074 

a3 = 0.192, h3 = 0.90230, k3 = 0.72149, ©5 = 200.30, 
b3 =0.519. 

(18) 
From Eqs. (7) to (11): 

B', =0.00071, C'i =0.00786, D', =-0.00030, E', =-0.00728, 

Figure 6. Components of a, h and k. Log A 

F, =0.00167; 
B'2 =0.00296, C2 =0.00509, D'2 =0.00198, E'2 =0.00411, 
F2 =0.00046; 
B'3 =0.1993, C3 =02325, D'3 =-0.07248, E'3 =-0.3876, 
F3 = 0.1003. 

(19) 

Inserting the coefficients from Eq. (19) and log A = 1.8951 
into Eq. (16) produces 

0.00786 a2 - 0.00593 a + 0.00110 = 0 
0.00509 h2 + 0.00972 h + 0.00421 = 0 
0.233 k2 -0.00991 k -0.0371 = 0 (20) 

Using the lower branch of the hyperbola, we now know that 
a = 0.329, h = -1.25, k = -0.378,0 = 67.5E and b = 0.794. 

Applying the above results to Eqs. (6) to (11) yields 

A' = 0.522, D' = -0.337, E' =-0.432 and F = -0.147      (21) 

Inserting these coefficients into Eq. (15) with yN = log t 
= -0.4776 gives 
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0.522 x'2 - 0.586 xN + 0.059 = 0 (22) 

Solving for xN produces log ABC = 1.01 and C = 0.0130 or 
1.3 %. The BM data set gives C = 0.014 or 1.4 %. These 
results are very typical of solutions obtained from the ABCt 
law. 

Quantifying Ricco=s Law and Blackwell=s Law 

Since the ABCt law is a closedBform equation, it can be used 
to quantify many of the simple empirical laws that have been 
formulated to describe the performance of the fovea of the 
human eye. Ricco=s law is illustrated in Figure 2 where the 
plots for all A < 6 arcmin2 are coincident and the coefficients 
in Eq. (15) are constant for a given value of B. Hence, for a 
given background luminance B and exposure time t in this 
region, Eq. (15) reduces to a simple quadratic equation with 
log (AC) as the variable when A < 6 arcmin2. The value of 
the product AC is the Ricco constant for the assumed values 
of B and t For example, if B = 10 ft-L and t = 1/3 second, Eq. 
(15) simplifies to 0.8517 (log AQ2+ 1.863 log AC+ 0.8253 
= 0 and log (AC) = -0.617 or AC = 0.2415; the original BM 
data set gives AC = 0.247. This phenomena stems from the 
feet that below a minimum critical angle, diffraction effects 
primarily determine the apparent observer image size while 
the target range and physical dimensions determine the 
illumination and subsequent apparent threshold contrast. The 
end result is that the product of contrast threshold and target 
area is a constant whose value is a function of ambient 
luminance and presentation time. 

Blackwell=s law is illustrated in Figure 3 where plots for B < 
10"* ft-L are nearly coincident and the coefficients in Eq. (15) 
are nearly constant for a given value of A. Hence, in this 
region, for a given target area A and exposure time t, Eq. (15) 
reduces to a simple quadratic equation with log (BC) as the 
variable when B < 10"2 ft-L. The value of the product BC is 
the Blackwell constant for the assumed values of A and t. 
This region describes a range where rod vision typically 
dominates the human vision process. Cone vision dominates 
for brighter ambient luminance conditions, such as direct 
sunlight, when B » 0.1 ft-L which produces noise or contrast 
limiting conditions. The transition between B < 1 ft-L and 
B >0.01 ft-L contains a mixture of both rod and cone vision 
such as occurs near dawn or dusk. The ABCt law generalizes 
Ricco's and Blackwell's laws and gives some particularly 
simple relationships between the relative target/background 
contrast, target area and ambient luminance which are useful 
for military and commercial applications. 

Bloch=s Law 

Figure 4 reveals that there is an approximate straight-line 
segment of slope Bl associated with each plot. 

Log ABC (A in arcmin , B in ft-L) 

Figure 7. The background luminance family of log t versus 
log ABC plots after a horizontal co-ordinate translation. 

Figure 7 illustrates the merging of several families of 
hyperbolas (B = 0.01,0.1, 1,10 and 100 ft-L) relating to 
plots of log t versus log ABC produced by a horizontal co- 
ordinate translation. Those plots with the same background 
luminance have been horizontally translated to a point of 
coincidence with the plot corresponding to A = 2825 arcmin2. 
The interest in these mergers is that it can now be seen that all 

plots of log t versus log ABC have an extended section that is 
an approximate straight-line segment with a slope of-1. For 
these regions the ABCt law simplifies to 

log t = - log ABC + log N (23) 

where log N is the y-intercept of the approximate straight-line 
segment. Equation (23) can also be written as 

ABCt = N (24) 

where N is a constant for a given A and B. The parameter N 
represents the threshold energy required to elicit excitations 
from the foveal visual system. The duration for which Eq.(24) 
is valid is called the critical duration and varies with 
background luminance. It is somewhat affected by target area. 
It ranges from approximately 30 msec at high background 
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luminance to approximately 100 msec for low background 
luminance. It is within these durations that the visual system 
is most efficient. An equation for N can be obtained from the 
equations of a straight-line and Eq. (15). Since the line of 
slope -1 passes through the point (x*, -3), using (xN, yN) = 
(x*,-3) in Eq. (15) yields 

-£*-c 

AN x*2 + (DN -3 AN) x* + (FN -3 EN) = 0 

Solving for x* gives 

(25) 

(3A' - W) + V(D' - 3A)2 - 4A' (F - 3E') 
2A' 

(26) 

From the equation of a line with slope -1 passing through the 
points (x*, -3) and (0, log N) 

logN (27) 

Since AN. DN, EN and FN are all functions of target area and 
background luminance, log N is also a function of these two 
parameters. Figure 8 shows the relationship between 
threshold energy (log N), target area (log A) and background 
luminance during the critical duration when ABCt = N. An 
analysis of Figure 8 reveals a number of important 
correlations. For any target diameter less than one degree, the 
threshold energy increases with background luminance. 
However, there is very little difference in the threshold 
energies at very low background luminance levels (B < 0.01 
ft-L). In the Ricco=s law regime (A < 6 min2), threshold 
energy is independent of target area; threshold energy is 
constant for a given background luminance. As target area 
increases beyond the Ricco=s law regime, threshold energy is 
also increased. For target areas A > 100 min2, plots of log N 
versus log A appear to be straight, parallel lines with slopes 
roughly equal to 0.75 (the slopes range from 0.72 to 0.85). 
This implies 

log N = 0.75 log A + log K (28) 

where log K is the y-intercept and a function of background 
luminance B. Equation (28) can also be written as 

N=KA"75 (29) 

where A is in arcmin2, B in ft-L and t in seconds. 

In other words, for large targets, the threshold energy is 
proportional to A0 75. 

Log A (A in arcmin , B in ft-L) 

— B= 0.001 "^B= 0.01 *B= 0.1 
-^B= 1        -*-B=  10 -*-B= 100 

Figure 8. Temporal summation of light energy. Y-intercept 
(log N) versus log A. 

The following example finds the value of N for A = 78.54 
arcmin2 and B = 10 ft-L: Inserting the values from Eq. (20) 
into Eq. (26) gives x* = 2.88. From Eq. (27) we get log N = 
-0.12 and N = 0.76. At t = 0.001 seconds, the BM data set 
gives C = 0.982; hence, the product ABCt = 0.77. 

The above observations relate to Bloch=s law, which can be 
expressed as follows: the product of threshold intensity and 
target duration is a constant within the critical duration. 
During the critical duration we have what is commonly 
referred to as to as temporal summation of light energy. Total 
temporal summation of light energy occurs when ABCt = 
constant. It is important to remember that the value of N in 
Eq. (24) is a function of both A and B. It is not appropriate to 
substitute values for A and B without adjusting the value of N. 
Figure 9 illustrates the effect of using different values for A 

and B that produce the same product for AB. The plots of log 
t versus log ABC for the same product AB are not the same. 

As target duration increases beyond the critical duration, the 
slopes of the tangents to the log t versus log ABC curve 
approach infinity; the visual system becomes increasingly 
inefficient as noise begins to dominate the system. As the 
slopes approach infinity, the threshold intensity ABC 
approaches some minimum value related to the Weber- 
Fechner law that depends on the target area and the 
background luminance.    After a critical duration, target 
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duration no longer has any influence and brightness 
discrimination is determined entirely by the incremental 
luminance of the target. This minimum is easily obtained from 
the ABCt law by differentiating Eq. (15) with respect to x and 
allowing the derivative to approach infinity. This procedure 
yields 

log (ABC)^ = -EN/AN (30) 

where AN and EN are given byEqs. (6), (10), (16) and (17). 
Figure 10 shows how the minimum intensity varies with 
target area and background luminance. In the Ricco=s law 
regime, the minimum threshold intensity is a constant for a 
given background luminance; smaller values are associated 
with higher luminance levels. As the target area increases 
beyond the Ricco area, the minimum threshold intensity also 
increases; more light energy is required to elicit excitation. It 
can also be seen from Figure 9 that for a given target area the 
minimum threshold intensity increases as the background 
luminance increases. In feet, for target areas greater than 
approximately 100 arcmin2, the minimum threshold intensity 
is directly proportional to the target area. Using the 
approximation 

- (B2 E2  - 2 C, D2) s  B2 VE2
2 - 4 C2 F2 (31) 

in Eq. (16), it can easily be shown that the plots in Figure 10 
are hyperbolas with asymptotic slopes of zero and +1. 

5. TWO PART FORMALISM OF THE ABCt LAW 

Interestingly, the critical duration seems to be related to the 
response time of the cone cells in the foveal region of the 
retina. Studies performed on monkeys7, using measurements 
of membrane currents from monkey cones generated by brief 
flashes of light of varying strength, show that their response 
times correspond closely to the critical duration for humans. 
An alternate formalism of the ABCt law has also been pursued 
that closely relates to the critical duration and the response 
mechanism of the human eye. It considers the threshold 
presentation time t to consist of the product of two functions, 
Q and t*, where t* represents the total integration of light 
energy (ABCt) over time. This is referred to as temporal 
summation. Total temporal summation occurs when ABCt = 
constant (during the critical duration). The Q parameter is a 
measure of the amount that the foveal vision system deviates 
from total temporal summation of light energy. If t = Q t* then 
logt=logQ + logt*. Using y= logt,yi = log Q and y2 = log 
t*, Eq. (15) becomes 

c 
c 

i 

Log ABC (A in arcmin , B in ft-L) 

A; 12.56, B =  100 
12.56, B= 0.1 

A= 1256, B = 1 
A = 1256, B = 0.001 

Figure 9. Plots of log ABC versus log t are not unique for the 
same product AB. 

C 

s 

Log A (A in arcmin , B in ft-L) 

— B= 0.001 -*-B= 0.01 — B = 0.1 
*B= 1        *"B=  10 — B = 100 

Figure 10. Minimum log ABC versus log A. 
ANx2 + ANx(y,+y2) + DNx + EN(y, + y2) + FN = 0(32) 

If y2 is the y-coordinate of a straight line through the point 
(x*, -3) with slope = -1, then 

250 



y2 = - x + x* -3 (33) 

and Eq. (32) can be written as 

ANxy, + ENy,-(3AN-DN-ANx*+EN)x 
- (3 EN - EN x* -FN) = 0 

A = 78.5 arcmin 
B= lOft-L 

(34) 

Since closed-form equations have been derived for the y- 
intercepts (y0 = log N), Eq. (34) represents a closed-form 
solution for the multiplicative function Q. Also, since the 
coefficients of second degree vanish, Eq. (34) is the equation 
of a hyperbola with one asymptote vertical and the other 
horizontal. Figure 11 illustrates the two-part formalism of the 
ABCt law. Evidently, the process of detecting a BM target, 
using foveal vision, can be equated to a linear process 
associated with total temporal summation of light energy 
modified by a quadratic multiplicative function. 

6. RESULTS 

The validity of the ABCt law can be quickly determined by 
comparing BM threshold contrasts with those calculated 
using the ABCt law. Of the 420 unique BM threshold 
contrasts, 21 threshold contrasts obtained from the ABCt law 
produce percent differences greater than 10 percent. These 
contrasts are identified in Table 1 along with the conditions 
that produced them. Seven of the Table 1 entries differ from 
the BM threshold contrasts by less than 0.10. Also, the largest 
percent difference is less than 17 % with the majority of the 
errors in the 11-13 % range. Hence, only three percent of the 
unique BM threshold contrasts are reproduced with any 
appreciable error. 
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Figure  11.     Two part formalism  of the  ABCt  law. 
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Table 1. Conditions producing a percent difference greater than 10% between BM threshold contrasts and those calculated from the 
ABCt law. 

BM Model 

# A (min") C C C%Diff AC Usec) Bffi-L) 
1 314.12 0.020 0.022 10.90 0.00 1/30 100 
2 706.46 0.017 0.019 10.65 0.00 1/30 100 
3 28.25 0.320 0.285 -10.94 0.03 1/300 100 
4 28.25 1.035 0.900 -13.03 0.13 1/1000 100 
5 78.54 0.764 0.683 -10.54 0.08 1/1000 100 
6 153.85 0.082 0.092 11.35 -0.01 1/100 10 
7 314.12 0.068 0.075 10.39 -0.01 1/100 10 
8 706.46 0.113 0.132 16.57 -0.02 1/100 1 
9 6.15 1.941 2.186 1262 -0.24 1/30 0.1 
10 6.15 5.433 4.560 -16.05 0.87 1/10 0.01 
11 6.15 13.740 12.207 -11.16 1.53 1/30 0.01 
12 6.15 134.276 115.931 -13.66 18.35 1/300 0.01 
13 314.12 13.274 11.700 -11.86 1.57 1/300 0.01 
14 706.46 10.257 9.071 -11.55 1.19 1/300 0.01 
15 6.15 434.510 382.474 -11.98 52.04 1/1000 0.01 
16 314.12 42.954 38.637 -10.05 4.32 1/1000 0.01 
17 6.15 24.099 21.337 -11.46 2.76 1 0.001 
18 6.15 52.723 47.186 -10.50 5.54 1/10 0.001 
19 12.56 205.589 232.681 13.18 -27.09 1/100 0.001 
20 28.25 114.815 130.145 13.35 -15.33 1/100 0.001 
21 2825.46 20.370 22.685 11.36 -2.31 1/100 0.001 
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ABSTRACT 

We consider in this paper observer behavior when images 
from different sensors both with and without targets are 
presented for a target acquisition task. False alarm rates 
are shown to increase with the change from a regular to a 
zoom sensor. In addition, the presence of an obvious 
target inhibits false detections. Implications for target 
acquisition models are discussed. 

INTRODUCTION 

While the model exists, the determinants of specific 
observer behavior are still open to question. In particular, 
how does the observer modify his behavior when there are 
changes in the number of false alarm opportunities? On 
this question, there has recently been a debate in the 
literature. Grossman et al (1) argued that the observer 
attempts to maintain a constant false alarm rate (CFAR), 
so that when the number of false alarm opportunities 
increases, the observer will correspondingly raise his/her 
decision criterion and reject more of them. Doll and 
Schmieder (2), on the other hand, believed that the human 
observer does not necessarily reject the possibility of 
increased false alarms when there are more opportunities. 

In most applications of target detection electro-optical 
systems, the man-in-the-loop plays a crucial part in the 
performance of the system. If one were dealing with an 
automatic target acquisition system, a great deal of effort 
would justifiably be invested in calculating the threshold 
for determining a target for optimum system performance. 
When the system is human-operated, understanding the 
decision-making process of the human observer is of 
major importance to the successful performance of the 
system. 

The question arises: how can we model the human 
observer? The theoretical foundation for modeling the 
human decision-making process in a detection task has 
been advanced with the development of Signal Detection 
Theory (SDT). SDT explains the behavior and the 
detection ability of the observer in terms of the tradeoffs 
between false alarms and missed signals that generally 
characterize binary decisions. Within the framework of 
SDT, the observer's hits, misses, false alarms, and correct 
rejections are combined to give an overall view of the 
observer's decision strategy as well as performance 
ability. 

Both of the above studies based their findings on relating 
the amount of clutter in an image to the number of false 
alarms measured. In this paper, we wish to expand this 
concept to determine whether observer performance 
remains consistent under the conditions presented by two 
additional variables: 1) the case where two different 
sensors are used to present the stimuli to the observer, and 
2) the case where some of the images have obvious targets 
while others have no targets. 

In Section II, we briefly describe signal detection theory. 
We describe our experiment and its results in Section III 
and IV. A discussion of the implementation of these 
results into a general model of target acquisition is 
presented in Section V. 

II. SIGNAL DETECTION THEORY 

Signal Detection Theory (SDT) can be briefly 
summarized for our purposes as follows (see reference 3 
for a detailed description): 
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An observer is presented with a serious of opportunities to 
determine the presence of a target. If a target is present 
and it is detected, a "hit" is registered; if it is not detected, 
then a "miss" occurs. Similarly, if only noise is present 
and a target is mistakenly detected, a "false alarm" has 
occurred. If the noise is correctly recognized as noise, it 
is defined as a "correct rejection." 

When noise is presented to the observer, there exists a 
probability distribution associated with the degree that the 
noise resembles a target. For the noise curve in Fig. 1, the 
'x' axis is the degree of similarity between the noise and a 
real target and the 'y' axis is the probability value that the 
noise will have this value. For the case when a target with 
accompanying noise is presented, its distribution of values 
is related to how similar it looks to a clear target. 

IU.       EXPERIMENTAL PROCEDURE 

Five infrared pictures, with one target each, were 
prepared. Four of the images' targets were easily 
recognizable, and one image's target was, in our opinion, 
difficult to find. Two variations of these images were 
prepared. A quarter of each of the original images was 
cut out and blown up to fill the original image size. The 
target was inserted into the resultant image in such a way 
as to avoid artificial cues to the presence of the target. 
For the purpose of this paper, we will consider such 
images to come from a "different" type of sensor, i.e. we 
will refer to the "regular" sensor and the "zoom" sensor. 
These ten images (five regular and five zoom) were then 
duplicated with their targets removed. 

When the two distributions overlap, the observer, who 
places a threshold and decides that above such a value he 
will declare a target, can never achieve a perfect result 
(0% misses and 0% false alarms). The observer's ability 
to discriminate between noise and target with noise is 
limited by the distance between the means of the two 
distributions, defined as the variable d'. Shifts of the 
threshold, defined as the variable p, will result in changes 
in the tradeoff between misses and false alarms. 
Observers wishing to avoid missed targets will adjust their 
threshold downward and will, as a result, accept more 
false alarms. The placement of the threshold is governed 
by the conscious or unconscious decision of the observer. 
How the position of the threshold changes with different 
scenarios is the subject of this paper. 

The twenty images were displayed on 17-inch computer 
screens to fifteen observers in a laboratory setting. The 
observers were not informed of how many targets were 
present in any image. The order of image presentation 
was counterbalanced between subjects, and ordered so 
that the duplication of the images would have little or no 
effect. A post-experiment survey confirmed that the 
recurrence of similar images was not apparent to the 
subjects. 

Observers were told to move a mouse-controlled cursor to 
the target positions that they found and to "shoot" at the 
targets by clicking on the mouse button. The location and 
time of the clicks were recorded for our analysis. 

IV. RESULTS 

d- 

Observer Threshold p 

Fig. 1: Probability distributions for noise and signal 
(target) plus noise as a function of similarity to an ideal 
(noise-free) target. 

Table 1 gives the probability of a hit for the target in each 
of the images with targets and the average number of false 
alarms per observer for each image. The probability of hit 
was fairly constant for the two sensors. However, the 
number of false alarms per image increased from 0.23 to 
0.41. 

To check the significance of these results, we ran the 
statistical test, analysis of variance (ANOVA) on the false 
alarm rate, testing for the variables sensor type and the 
target presence (or absence). We found that both sensor 
type and target presence were significant main factors 
affecting false alarm rate. The interaction between sensor 
type and target presence was not significant. Figure 2 
shows the dependence of the number of false detections 
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per observer for images on the regular and the zoom 
sensors, and figure 3 shows the effect of target presence. 

V. DISCUSSION 

Table 1: Probability of detection and false alarm rates for images with 
targets from the two sensors. 

Sensor 1 (regular Sensor 2 (zoom) 
Hits     False alarms Hits    i False alarm 

Image 1 0.8             0.3 1.0              0.4 
Image 2 0.9              0.0 1.0 0.3 
Image 3 0.5              0.5 0.3 0.7 
Image 4 1.0              0.1 1.0 0.6 
Image 5 1.0              0.1 1.0 0.1 

0.84             0.23 0.87             0.41 

False Detections In Regular end Zoom Image Views 
MAGE Mttn EltW 

F(1,l4M«.p«.0t15 

ZOOM 

IMAGE VIEW 

Fig. 2: Average false alarm rate per observer (summed over ten images) 
for images from the regular sensor and the zoom sensor. 

False Detections In Images With and Without Targets 
TARGET Man Ettto 

F(1,14r-!001;p«.0C69 

Fig. 3: Average false alarm rate per observer (summed over ten images) 
for images with targets present and those without targets. 

Sensors: Our results when comparing false alarms rates 
under the regular and the zoom sensors, showed that 
observers did not strive to maintain a constant false alarm 
rate. The zoom sensor had a significantly higher false 
alarm rate than the regular sensor when comparing all the 
images. This would indicate that the CFAR model of 
observer behavior is limited and does not extend to major 
changes between sensors. 

It is interesting to note that the change in the false alarm 
rate cannot automatically be equated with a higher false 
alarm probability. To determine the false alarm 
probability, one must calculate how many opportunities 
existed in the images. We chose two different methods 
for calculating the number of false alarm opportunities to 
illustrate how the interpretation of the results can differ 
drastically with the method used. One of the methods was 
suggested by Grossman et al [1], whereby there are a 
fixed number of false alarm opportunities in each image 
based on dividing the area of the image into glimpse-sized 
sections. Under their method, a higher false alarm rate 
would indicate a lower value for d', or decreased observer 
ability to discern between targets and noise. 

A second method that we used was to include as 
opportunities the actual areas chosen by the subjects as 
false alarms within the images. This method is similar to 
one used by Doll et al [2] in that observers' actual 
decisions were used post-facto to establish the 
pre-experiment circumstances. In our calculation, we 
defined as false alarm opportunities those areas 
designated by two or more different observers as 
containing a target. In this way, we avoided basing our 
calculations on irrational decisions by any individual 
observers. Under this method, a higher false alarm rate 
could be related to more false alarm opportunities and not 
necessarily to decreased detection ability or to more 
difficult images. 

We tried both explanations in the analysis of our data. 
Table 2 contains the resultant d' calculations based on the 
two methods. In the first, we considered a false alarm 
opportunity to be any area that any two (out of the fifteen) 
observers incorrectly considered to be a target. In the 
second, we assumed a constant average of three false 
alarms per image. As shown in the table, d' increases 
with the first method; there are more false alarms not 
because the opportunities are more target-like, but 
because there are more plentiful.   Alternatively, with the 
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second method where we assume that the number of false 
alarm opportunities is fixed, d' decreases while the 
number of false alarms increases. 

usage of the zoom sensor.  Differentiating between these 
options is an interesting direction for future research. 

Table 2: Value of d' for images from the two sensors based on two 
alternative methods of calculating the number of false alarm 
opportunities, as described in the text. 

False alarm opportunities and d' 

All Images 

d*(a) d'(b) 

2.11 2.36 

sensor 1 (Regular) 2.12 2.41 

sensor 2 (Zoom) 2.17 2.26 

a: false alarm opportunities > 1 observer 
b: given a fixed # of opportunities (3/image) 

A good model of human target acquisition is necessary to 
be able to predict performance with the electro-optical 
systems discussed here. We hope that this paper 
represents a small contribution in this direction. 

Acknowledgements: We'd like to thank Stanley R. 
Rotman for providing the raw data set analyzed in this 
paper. 
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CONCLUSIONS 

This study was performed to study the differences in 
observer performance when confronted with different 
sensors and different conditions. We found that CFAR 
was not maintained when going from one sensor to the 
next, and that there was a tendency on the part of 
observers to lower the number of false alarms when an 
obvious target was present and detected. 

The increase of the number of false alarms with a change 
in sensor has at least two possible explanations: 1) the 
number of false alarm opportunities increased or 2) the 
similarity of false alarms to real targets increased with the 
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ABSTRACT 
The overall objective of this project is to develop a 
computational model for predicting probability of 
detection during search for hard-to-see targets. This 
model is image based: it uses imagery for input, rather 
than estimated parameter values characterizing critical 
factors such as clutter and target detectability. 
Consequently, it generates probability-of-detection values 
that are functions of image content, rather than functions 
of subjectively estimated parameters. The input domain is 
infrared or visible-light imagery of distant vehicle targets 
in cluttered scenes. Such hard-to-see targets are generally 
only detected once they have been fixated. Hence, our 
modeling approach focuses primarily on factors 
influencing the choice of fixation points during visual 
search. A saliency map is constructed from bottom-up 
image features, such as local contrast. To account for top- 
down cognitive effects—such as bias towards the 
horizon—a separate cognitive bias map is generated. The 
combination of these two maps provides a Fixation 
Probability Map (FPM). Given the FPM, a sequence of 
fixation points is generated in a way that accounts for 
imperfect memory of past fixation locations. Results are 
presented comparing model-generated FPM's with eye- 
tracker data collected from observers in visual search 
experiments. 

INTRODUCTION 
The goal of this project is to construct a model that 
elucidates the relationship between bottom-up (stimulus 
driven) and top-down (cognitive) effects on visual search 
for distant hard-to-detect targets, with the ultimate goal of 
predicting the average search performance of a trained 
operator on a given scene. 

data from very simple scenes: uniform background with 
an array of many similar distractor items and one or a few 
target items (for review see Wolfe, 1998). Unfortunately, 
such models do not necessarily scale with increased scene 
complexity and are not applicable to photo-realistic 
imagery. Models specifically designed to handle photo- 
realistic imagery, such as the TARDEC vision model 
(Gerhart, et al, 1995), Georgia Tech vision model (Doll, 
et al, 1997), and recent work at CalTech (ltti, Koch, and 
Niebur, 1998) have not included cognitive effects. There 
is great need for models capable of handling imagery of 
realistic complexity, yet designed with modeling 
constraints that enable both bottom-up and top-down 
factors of visual search to be better understood. 

We chose to constrain the problem by focusing on hard- 
to-see targets, targets that can not be detected without 
foveation (where we define "detection" as a true positive 
response in a visual search experiment, i.e. designating a 
real target as "target"). This is a reasonable constraint 
because detecting a hard-to-see target requires high visual 
acuity, and visual acuity is a function of retinal 
eccentricity. Acuity is highest in fovea with rapid fall-off 
towards the periphery. Acuity is reduced by 50% just 2.5° 
away from the point of fixation and it is reduced by 75% 
at 6° eccentricity. 

Acuity falloff is nature's way of solving a resource 
allocation problem: the fovea is far more useful than the 
periphery, but high acuity requires resource intensive 
high-resolution sampling and processing of the image. In 
fact, it is so resource intensive that even though foveal 
field-of-view covers only a region the size of the tip of 
your thumb at an arms length, a large portion of the 
human brain is dedicated to foveal processing. 

The task of visual search—locating objects of a known 
category based on their visual appearance—is among the 
many functions of the human visual system that are not 
well understood. Given the multitude of stimulus 
variables that affect visual search, modeling this task is 
not possible without further constraints. Past approaches 
have generally been constrained by fitting psyche-physical 

With such a small fovea, most of the visual scene never 
gets foveated. This led us to the conclusion that the choice 
of fixation points in a given scene is the most important 
determinant of whether hard-to-see targets get detected. 
Hence, our modeling approach focused primarily on the 
different factors that affect the choice of fixation points 
and secondarily on the actual foveal processing. 
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MODEL 
We have developed a model with four main components: 
Peripheral Processing, Fixation Selection, Foveal 
Processing, and Classification. The block diagram in 
Figure 1 below shows the relationships between those 
components. The following table summarizes the 
functionality of each component. The whole retinal image 
is continuously sampled at low resolution by the 
Peripheral Processing component while at the same time 
one small region centered on the fixation point is 
processed in full resolution by the Foveal Processing 
component. The Fixation Selection component processes 
a Fixation Probability Map from the peripheral 
component to generate coordinates specifying the next 
fixation point. The output from the foveal component is in 
the form of feature vectors that get classified by the 
Classification component, such that each fixation point 
gets labeled "target" or "non-target". 

Input knag* Fixation Probability Map 

FOVEAL 
PROCESSING 

PERIPHERAL 
PROCESSING 

V«xt Fixation Coordinates 

»CLASSIFICATION 

i 
FIXATION 

SELECTION 

Detected 
Targets 

The following subsections describe the first two 
components in more detail, the rest of the model will be 
reported elsewhere. 

Peripheral Processing 

The Peripheral Processing component receives input 
from the peripheral regions of the retinal image. Since 
that is most of the image, the simplifying assumption was 
made to use the whole image as input to Peripheral 
Processing. The output of this component is a Fixation 
Probability Map (FPM) of the same size as the input 
image, where the value of each pixel indicates the 
predicted probability for a fixation at that location in the 
input image. The following modules operate sequentially 
within this component: 

• Bandpass Filtering of the whole image models retinal 
lateral inhibition and low-resolution sampling. 

• Peripheral Feature Extractor computes Peripheral 
Feature Maps of the same dimensions as the input 
image, one map per feature. 

• Threshold & Sum operator combines all feature maps 
into one Saliency Map. 

• Horizon Detector generates a Horizon Bias Map if 
the horizon is visible in the image. 

• Sum & Normalize operator combines the Saliency 
Map and Horizon Bias Map into a Fixation 
Probability Map. 

Figure 1: Block diagram for search and detection model 

Table 1: Summary of main component functionality 

Module Description 

Peripheral 
Processing 

Computes Fixation Probability Map using 
bandpass filtering followed by a nonlinear 
combination of local contrast measures and 
an optional bias towards the horizon 

Fixation 
Selection 

Computes fixation coordinates based on 
highest peaks within Fixation Probability 
Maps, accounting for imperfect memory of 
past fixations 

Foveal 
Processing 

Computes feature-data for the 
neighborhood of each fixation point, based 
on expected target size and shape 

Classifi- 
cation 

Based on the features, classifies each 
fixation as a point where human observers 
would either designate a target or a non- 
target 

Bandpass Filtering 

A modeling approach was needed for the peripheral low- 
resolution sampling of the input image, that also captures 
the well known lateral inhibition found in many 
processing layers of the retina and early cortical regions. 
We chose a difference-of-Gaussians (DOG) convolution 
operator with parameters (center and surround Gaussian 
widths and heights) chosen to emulate known 
physiological and anatomical data (Spillman & Werner, 
1990, p.29). The resulting DOG consists of two 
concentric Gaussians. Modeling lateral inhibition, the 
surround Gaussian is subtracted from the center one. The 
width of the center Gaussian was chosen to represent 
retinal sampling at around 6° eccentricity, with cr2 = 2. 
The surround Gaussian was chosen to be 5 times wider 
and 1/5 as high. Convolving this DOG with an image 
blurs the image slightly (due to the center Gaussian), but 
it also high-pass filters it (due to the inhibitory surround), 
with a net effect of bandpass filtering as shown in Figure 
2 below. This increases the salience of very low contrast 
targets and helps explain how such targets attract fixation. 
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Figure 2: Original input image (above) and bandpass filtered 
version (below) 

Peripheral Feature Extraction 

We assume that the probability of attracting attention to 
any given image region depends to a large degree on the 
feature saliency of that region with respect to the 
associated background. The Peripheral Feature Extractor 
measures feature saliency by computing Peripheral 
Feature Maps (PFM) from the filtered input image. 

factored out). Finally, from a modeling point-of-view, 
feature maps are easy to work with. They retain all spatial 
relationships (unlike frequency domain representations) 
so they can always be viewed as images. 

Using feature maps begs the question: what are the 
features? After detailed analysis of past feature 
integration approaches (see Wolfe, 1998 for a review), we 
decided that local contrast was the feature with the best 
potential in our domain, i.e. visual search for small hard- 
to-see targets in gray-scale still images. We implemented 
and evaluated a number of local, unoriented contrast 
measures. Through analysis and empirical testing, we 
found the following four contrast measures most 
successful: 

• Absolute-difference-of-medians 
• Dispersion 
• Difference-of-dispersions 
• Doyle 

The absolute-difference-of-medians contrast saliency 
measure at a point is defined as the absolute difference 
between the median brightness of a rectangular window 
Ai centered around the point P and the median brightness 
of a larger rectangular window A& as illustrated in Figure 
3 below, and computed via equation (1): 

CP = | Med(A,) - Med(A2) I (1) 

where CP is the contrast metric at point P and Med(A) is 
the median brightness value inside area A. The median 
value is chosen over other low pass filters due to its 
preservation of edges. Other filters, such as the Gaussian 
filter or other linear smoothing filters, were considered for 
this function, but were found less desirable since they 
result in the presence of "shadows" near the edges. An 
additional advantage to using the median is that for 
standard byte-per-pixel images, the median value can be 
computed inexpensively using a histogram technique. 

The concept of a feature map is attractive for a number of 
reasons. Feature maps are biologically plausible: they are 
topographic representations of the retinal image, just like 
the maps that have already been identified in visual cortex 
of primates and cats. In fact, there is significant evidence 
that topographic maps are the primary representation for 
all sensory information in the brain. Feature maps are 
fully parallel, both across spatial locations within each 
map and across all maps. Such parallelism is needed to 
explain the very rapid effects of visual "pop out", 
whereby one can detect a target object among distractors 
in as little as 50ms (after response delays have been 

*2 

Kj, 

Figure 3: Two-window contrast measure kernel 

This contrast measure depends on the choice of the two 
free parameters areas Ai and A2. An object which 
matches the size of At will give maximum contrast 
response. Since the size of objects of interest in the image 
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is not known a priori to the operator, we implemented the 
contrast filter with multiple different sizes for Ai 
computed in parallel. The size of A2 was kept constant 
since it was significantly larger than even the largest A]. 
This is effectively equivalent to having multiple contrast 
filters operate in parallel. The outputs of the different 
contrast filters are then averaged to generate an overall 
contrast measure. The reason for taking the absolute value 
of the difference was to make the measure equally 
sensitive to either contrast polarity, i.e., light object on a 
dark background or dark object on a light background. 

Dispersion is the sum of absolute values of differences 
between the pixel intensity at point P and at all other 
points inside window A centered on P. This is an LI 
measure of the local variance in intensity values around a 
pixel, in the same way as CT

2
 is the L2 measure of local 

variance. (In feet the dispersion and difference-of- 
dispersions features can be replaced by variance and 
difference-of-variance features without major adverse 
effects). This measure of local contrast has one free 
parameter: the window size A. Unlike the difference-of- 
medians, this method is sensitive to intensity variations 
inside the window, hence only one window is used. For 
small window sizes, the dispersion value is a measure of 
abrupt variation in intensity levels, such as caused by 
edges running at any orientation through the window. 

We also implemented a difference-of-dispersions 
contrast saliency measure using the same two window 
approach shown in Figure 3 above. The two window sizes 
are combined by subtracting the dispersion value for the 
larger window from the one for the smaller window and 
half-wave-rectifying the result. This is equivalent to 
saying "show me the locations where dispersion on a 
small scale is greater than dispersion on a large scale." 
This is a selective measure of contrast, but one that 
correlates well with some highly salient image regions. 

The Doyle contrast measure is a measure of first-order 
statistics that combines mean and standard deviation as 
follows: 

An efficient way of computing dispersion used for both 
dispersion contrast measures is based on the histogram of 
pixel intensities computed over window A. The dispersion 
at point P is then given by: 

D=X z-np(k) 
r      k = 1 ' ' (2) 

where N is the number of histogram bins (normally 
chosen to be 256), z is the bin center value, p(k) is 
normalized histogram frequency at bin k, and u is the 
mean intensity value inside the window. 

[(Pi-u2r + (o,-a2n 2-11/2 (3) 

where p, and o-j are mean and standard deviation 
computed over area A;, referring once again to windows 
A! and A2 in Figure 3 above. This measure—unlike the 
difference-of-dispersions—is equally responsive to either 
contrast polarity. It responds equally well to a small high 
contrast region in a larger low contrast area and a small 
low contrast region in a larger high contrast area. This 
insensitivity to contrast polarity is similar to the absolute- 
difference-of-medians, but that method is only sensitive to 
variations larger man the smaller window, the Doyle 
method is also sensitive to intensity variations inside the 
smaller window due to the standard deviation terms. 

Threshold & Sum Operator 

The Threshold & Sum operator thresholds each Peripheral 
Feature Map (PFM) with an empirically determined 
threshold value and then sums the results into one 
Saliency Map (SM), as shown in Figure 4 below. 

The notion behind thresholding each PFM is well 
established in modeling human perception: small 
differences in local features such as color or gray-level do 
not contribute to stimulus driven saliency (Wolfe, 1994). 
A small difference in gray-levels translates to small 
values of contrast, hence a threshold is used to null out all 
regions of each feature map with "small" values. 

The threshold also serves another purpose: all feature map 
values greater than the threshold are replaced by a 
uniform value. This is to model categorical perception, 
the highly non-linear response found in most forms of 
human perception (Wolfe, 1994). A thresholded feature 
map can therefore be interpreted as a map that specifies 
for each pixel location whether that feature is peripherally 
perceived as "present" or "absent." 

Combining the thresholded feature maps is done by point- 
wise summation, similar to the original feature integration 
theory models of Treisman & Gelade, 1980. All feature 
values that survive thresholding in the individual PFM 
end up contributing to the Saliency Map. If a particular 
image location activated multiple PFM strongly, then that 
location will have a high value in the SM. In other words, 
that location is highly salient and very likely to attract 
attention. The SM in Figure 4 below is the result of 
thresholding, summing, and smoothing the four PFM 
generated by applying the four feature types described 
above to the image shown in Figure 2 above. Note how 
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the highly salient objects in the lower left comer are 
lightest in this saliency map. 

Figure 4: Saliency Map 

Horizon Detector 

The Saliency Map is the basic component in the Fixation 
Probability Map (FPM). Without the optional Horizon 
Detector, the FPM is simply a unity-volume normalized 
version of the SM, such that the sum of all values in the 
FPM equals 1.0. However, we recommend including the 
Horizon Detector for imagery where the horizon is 
visible. 

To summarize our reasoning for including the Horizon 
Detector, when evaluating FPM based solely on Saliency 
Maps, we noticed that they consistently underestimated 
fixation probabilities near the horizon. The eye-tracker 
data showed that fixations were often densest in a 
horizontal band bounded by the horizon from above and 
tapering down towards the bottom of the image. This 
observed distribution of fixations coincides with the 
expected a priori probability distribution of targets for 
relatively flat outdoor scenes, such as these scenes. There 
is therefore reason to believe that this is a "real" 
phenomenon and not just an artifact in this particular 
data-set. 

Of course, the model's threshold values for the individual 
Peripheral Feature Maps could be adjusted such that this 
region contributed more to the SM, but only at the cost of 
other regions (near the bottom of the image and even 
above the horizon) becoming significantly over- 
represented in the SM. This is an inherent problem with 
global thresholds, they can not selectively affect some 
regions more than others. Our solution was to develop a 
Horizon Detector that generates a Horizon Bias Map as 
shown in Figure 5 below. 

Figure 5: Horizon Gating Map (above) and Horizon Bias Map 
(below) 

Also shown in Figure 5 above is an intermediate step in 
the making of the Horizon Bias Map. The Horizon Gating 
Map captures the distribution of fixations described 
above. It is automatically generated by the following 
algorithm: 

1) Combine PFM into a single image (point-wise 
max across all PFM) 

2) Threshold to binary (black < 10% max) 
3) Remove noise (15x15 median filter) 
4) Merge small regions until 2 contiguous regions 

remain (black above horizon, white below) 
5) Fill in white region with a linear gradient (white 

at the horizon to black 10% from the bottom) 
This gating map can not be used directly to gate the 
Saliency Map because that would drastically decrease the 
effect of highly salient regions close to the bottom of the 
image (such as the ones in the lower left comer of this 
image). It can also not be directly added to the Saliency 
Map because that would imply high fixation probabilities 
near the horizon even when there are no salient objects 
there. Consequently, we chose to use it as a gating map 
for the Peripheral Feature Maps, producing the Horizon 
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Bias Map shown above. The final result of the Peripheral 
Processing component—the Fixation Probability Map—is 
then generated by adding this Horizon Bias Map to the 
Saliency Map from before and unity-volume normalizing 
the result (such that the sum of all probabilities is 1.0). 
Note that the region just below the horizon is now 
represented as likely to receive numerous fixations, as 
well as the highly salient object in the bottom right 
corner. 

is a free parameter ranging between 0.0 and 1.0. A value 
of 0.0 for a indicates the assumption of perfect memory 
(never fixate the same location more than once); a = 1.0 
indicates an memory-less system (always go back to the 
last fixation). A value of 0.2 for a was used in simulations 
shown below. 

Fixation Selection 

The Fixation Probability Map (FPM) produced by 
Peripheral Processing is the input for the next major 
model component, Fixation Selection. This component's 
purpose is to convert the 2-D probability map into an 
ordered list of fixation coordinates, with the location of 
highest probability listed 1st, next highest probability 2nd, 
etc. An obvious solution would be to simply order the 
peaks in the FPM by height, but that approach would not 
account for refixations. We have observed in eye-tracker 
data a small but significant number of refixations for all 
observers in all but the very simplest search imagery. 

Hence, the following process was developed to generate 
individual fixations from a FPM accounting for the 
phenomena of refixation. It involves a feedback loop of 
the following three modules: 

• A Peak Detector chooses the current maximum value 
in the FPM as coordinates for the next fixation 

• A Fixation Memory module subtracts a Gaussian 
hole from its Fixation Memory Map, while also 
making all previous such holes in the map slightly 
shallower 

• The holes in the fixation memory map are added to 
the FPM, preventing the current location and other 
recently fixated locations from being chosen as the 
peak value on the next loop iteration 

A feedback loop is needed because the choice of future 
fixations depends on past fixation locations. In particular, 
the probability of refixating the same location is modeled 
here with exponential memory decay. The Fixation 
Memory generates a Fixation Memory Map that 
represents both the locations and recency of past 
fixations, as shown in the following figure. A Gaussian 
"bump" of fixation probability centered on every recently 
generated fixation point is subtracted from the current 
Fixation Probability Map, to eliminate the probability of 
just picking the same fixation point over and over again. 
To allow for refixations, the memory has a decay term, 
such that if the peak value of the Gaussian for the current 
fixation is 1.0 then the peak value for the last fixation is 
1.0 - a, for the next-to-last fixation 1.0 - a2, etc., where a 

•   » 

Figure 6: Instantaneous Fixation Probability Maps after 1, 3, 
6, and 8 fixations (clockwise from upper left) 

Figure 6 above shows the evolution of the Fixation 
Probability Map as new fixations are generated. Note that 
the range of values is no longer [0.0, 1.0] because the 
Gaussian "holes" can be as deep as -3.0. Since gray-scale 
is still linearly allocated for viewing purposes, black now 
represents the bottom of the deepest hole in each image 
and hence the value 0.0 is now represented with a light- 
gray. (White still represents 1.0.) 

The sequence of the past few fixations can be judged from 
the darkness of the Gaussians in Figure 6 above. For 
example, after three fixations (upper right panel) it is 
obvious that the left one is the 3rd (current) fixation, the 
right one was the 2nd fixation, and the middle one was the 
1st fixation. The 6th fixation (lower right panel) is the 
first fixation to stray from the region of distant hills and 
the 8th fixation (lower left panel) returns to that region 
because the Gaussians there have decayed sufficiently. As 
the Fixation Selection loop is run for more fixations, 
eventually all regions of significant probability are 
fixated, with the highest probability regions receiving 
more fixations. It is also possible to add low levels of 
Gaussian distributed noise to each pixel value just prior to 
Fixation Selection, such that a few relatively low 
probability locations tend to also be picked for fixation. 

RESULTS 
Evaluating the model's ability to predict fixation locations 
required access to images and associated eye location data 
collected with an eye-tracker from observers searching for 
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targets in those images. We obtained a set of 20 images 
from the "Shadows" database showing miniature military 
vehicle targets on the Army's former terrain-board at 
NVESD, Ft. Belvoir, VA. The scenes simulate desert and 
sparse forest locations, under simulated daylight or night- 
time flare lighting. Each scene contains 1 to 8 targets at a 
simulated distance of 1 to 3 km from the observer. Each 
image shows a 15° field of view, seen through a black- 
and-white camera that digitizes the image to 640 by 480 
pixels with 256 possible gray levels. The eye-tracker data 
was collected with an I-Scan video-based system that 
collects eye position data at a rate of 60 Hz with an 
accuracy of about 0.5°. This raw data was post-processed 
by defining a fixation as at least six consecutive eye 
position samples falling within 0.5° of a running mean 
location (Hoffman, 1996). 

The Fixation Probability Maps (FPM) generated from the 
set of 20 "Shadows" images were first visually compared 
to the eye-tracker data from the same set of images. For 
each of the 20 images, the FPM generated by our model 
was compared to a map generated directly from the eye- 
tracker data; each pair was found qualitatively very 
similar. Figure 7 below shows one example: above is the 
combined and smoothed eye-tracker data from 15 
observers viewing the same input image (the image 
shown in Figure 2 above) and below is the FPM generated 
by our model from that same input image. Note that the 
most fixated objects on the lower left and near center are 
correctly predicted by the model. 

The eye-tracker map in the figure below was generated as 
follows. First, we made the assumption that the 0.5° eye- 
tracker error is normally distributed with a reasonable 
variance. Instead of interpreting an eye-tracker fixation 
recording at (x,y) as a probability-of-fixation = 1.0 at 
(x,y) and 0.0 everywhere else, it should be interpreted as a 
2-D normal distribution centered on (x,y). This 
distribution should be Gaussian with large variance 
(default value = 20) and mean chosen to make integrated 
volume = 1.0. Rather than adding the Gaussians one-at- 
the-time, a map was created to keep track of the number 
of recorded fixations per pixel. The location uncertainty 
due to eye-tracker error was then added by convolving the 
map with a Gaussian shape kernel as described above. 
(Note that using such a large kernel is made 
computationally reasonable by implementing the 
convolution as multiplication in the frequency domain.) 

Figure 7: Eye-tracker data from 15 observers (above) and 
model-generated fixation probability map (below). 

Quantitative comparisons were not as straight-forward 
because there is no such thing as "truth-data" for fixation 
locations and because of the large variance between 
individual observers. The standard approach to validating 
a human performance model would be to plot average 
human performance with error bars and then plot model 
performance on the same scale, analyzing how well the 
two graphs matched. This cannot be done for fixation data 
because there is no scalar measure of performance for 
fixation locations, there are no "wrong" or "right" fixation 
points. Our approach was to generate a "mean observer" 
map for each image, depicting the average fixations over 
all 15 observers (representing location uncertainty as 
described above) and use that as for all comparisons. 

Figure 8 below shows the results per input image from 
two different comparisons with the mean observer: our 
model (-»•) and single observers (•). Each comparison is 
made by computing the sum of pixel-by-pixel absolute 
differences between the mean observer map and the map 
in question, and then normalizing the result to the [0.0, 
1.0] range. This Absolute Normalized measure of 
difference would be 0.0 for identical maps and 1.0 for 
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orthogonal maps. I.e., higher error values indicate more 
instances of a given location being fixated in one map and 
not in the other. The single-observer graph plots the 
average (and error bars) across 15 such comparisons, one 
per individual observer. 

It is apparent from the figure that our model's FPM are 
quite similar to the mean observer. In feet, our model is 
closer (lower error) to the mean observer than most 
individual observers, for all but one image. This implies 
that treating our model like a 16th individual observer 
would not change the group statistics significantly. 
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Figure 8: Absolute normalized error for model prediction (-«•) 
and for single observers (•) 

Another quantitative comparison that we performed was 
to compare two different versions of the model, with and 
without the Horizon Detector. The "Shadows" images had 
a visible horizon in every image and we therefore 
expected to see improved accuracy in FPM using the 
Horizon Detector. Figure 9 below confirms that 
expectation. The graph marked with (•) shows the results 
from the full model, including both the saliency and 
horizon bias inputs to each FPM (same as in Figure 8 
above). The other graph (• markers) shows the results 
from running the model with the Horizon Detector turned 
off, the error is increased for every image. 
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Figure 9: Comparing absolute normalized error for model 
predictions with and without horizon bias 

We also qualitatively evaluated the output of the Fixation 
Selection component, by comparing it to maps of eye- 
tracker data. Figure 10 below shows the combined eye- 
tracker data for all 15 observers for the same input image 

as before, with each fixation represented by a * overlaid 
upon the image. The circles (O) show the locations 
generated by the Fixation Selection component, using the 
full model with both saliency and horizon bias. Again, the 
most fixated objects on the lower left and near center are 
correctly predicted by the model. 

Figure 10: Eye-tracker data from 15 observers (") and model- 
generated fixations (O) 

CONCLUSIONS 
The major contribution of this project was the design and 
implementation of a computational model for predicting 
probability of fixation during search for hard-to-see 
targets. This model is image based: it uses imagery for 
input, rather than estimated parameter values 
characterizing critical factors such as clutter and target 
detectability. Consequently, it generates probability-of- 
fixation values that are primarily functions of image 
content, rather than functions of subjectively estimated 
parameters. The intended input domain is infrared or 
visible light imagery of distant vehicle targets in cluttered 
scenes. 

Relatively more effort has been put into the search part of 
this model (predicting fixation locations) than the 
detection part (predicting target vs. non-target 
designation, given a fixation) reflecting our belief that the 
need for a mature search model is currently more 
important. Due to its modular design, the detection 
component of our model can easily be replaced by other 
detection models. 

One of the characteristics of a modeling project of this 
scope is that some tasks turn out much harder than 
anticipated and others turn out to be unexpectedly simple. 
In the hope that our experience may be of use to future 
vision researchers, here are a few of the lessons we have 
learned: 

•     When modeling a function of the visual system, think 
in terms of images. Many researchers in the field of 
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target signatures are trained to work with zero or one 
dimensional highly abstract data, but the fundamental 
data type in the visual system is the 2-D retinotopic 
map. Abstracting the data to lower dimensions 
introduces abstract parameters that are very difficult 
to determine, even for expert users. 
Many aspects of eye-movements and visual function 
can be ignored in a visual search model. In particular, 
micro-saccades, fixation drift, and smooth eye- 
movements seem to be unimportant. If objects are far 
away then detection of object motion and stereo- 
range is not important (due to low velocity and 
disparity in retinal coordinates) and scan paths within 
objects are irrelevant (a single fixation covers the 
object). 
Fixation selection is a function of past fixations, but 
having the fixation probability map re-computed after 
each fixation is computationally prohibitive. A more 
reasonable solution is to use a static fixation 
probability map with a dynamic overlay, such as our 
fixation memory map. 
Partition your model according to trends in your 
experimental data, not according to "established 
approaches." We would never have thought of adding 
a Horizon Detector, which is a novel concept in 
visual search research, if we had not noticed a clear 
bias in fixation distributions towards the horizon. 
It is non-trivial to measure performance in the 
context of predicting fixation locations. Specific 
problems include lack of descriptive statistics that 
can tolerate slight spatial distortions (due to eye- 
tracker error) and also be useful for comparing model 
performance to the performance of one or more 
observers. 
Do not confuse designing an ATR system and a 
model of human vision. This may seem obvious, but 
it is an insidious problem because most engineers and 
researchers tend towards designing the system that 
performs best, instead of the system that performs no 
better than a human. Designing a model to make the 
same mistakes as a trained observer is the hardest 
part. 
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ABSTRACT INTRODUCTION 

This paper presents an analysis of the TNO search data 
for the Search_2 imagery using a contrast metric based 
on the 3-D structure of the vehicle. The analysis employs 
the traditional P-infmity-times-negative-exponential 
model of search time distribution. P-infmity and mean 
search time are modeled as functions of the target 
signature. The signature metric is one over the product of 
vehicle size and contrast. The value of the metric is 
measured by the ability to account for variance in 
observed search performance. 

Ground vehicles in natural lighting tend to have 
significant and systematic variation in luminance over the 
presented area. This arises, in large part, from the vehicle 
surfaces having different orientations and shadowing 
relative to the source of illumination and the position of 
the observer. These systematic differences create the 
appearance of a structured 3-D object. 3-D appearance is 
an important factor in search, figure-ground segregation 
and object recognition. 

The 3-D structure contrast metric performs better than 
RSS contrast, and both perform dramatically better than 
the area-weighted average contrast. Target height 
performs better than either target area or square root of 
area. The signature metric accounts for over 80 percent 
of the variance in probability of detection and 75 percent 
of the variance in search time as measured in the TNO 
perception tests. When false alarm effects are 
discounted, the metric accounts for 89 percent of the 
variance in probability of detection and 95 percent of the 
variance in search time. The predictive power of the 
signature metric when it is calibrated to half the data and 
evaluated against the other half, is 90 percent of the 
explanatory power. 

Size and contrast have long been used to characterize the 
signature of simple targets in simple scenes for the 
purpose of analyzing search time and probability of 
detection. Size and contrast have been found to be good 
predictors of search and detection performance for 
stylized 2-dimensional targets, such as uniform disks and 
4-bar patterns, against uniform backgrounds [Blackwell, 
1943] [Ratches, etal., 1975]. 

Unfortunately, the standard area-weighted average 
contrast ratio has not proven to be a good predictor of 
search and target acquisition performance for complex 
targets in complex scenes. D'Agostino, et al., [1997] 
suggested a variety of possible modifications to the area- 
contrast metric to account for statistical luminance 
variation within the target and local surround. Peli 
[1996] concluded that the common measures of contrast 
are inadequate to explain detection performance for 
Gabor patches against uniform backgrounds, and 
suggested a computational contrast metric based on 
multi-scale band-pass filtering as an alternative. 

Ground vehicles in natural lighting present non-uniform 
appearance when the surfaces of the vehicle are at 
different orientations with respect to the source of 
illumination and the observer (see fig. 1). The 
differences in shading between the adjacent surfaces 
reveal the 3-D structure. The appearance of common 
vehicles, from typical perspectives, under natural lighting 
is readily learned. This contributes to the perception of a 
3-D object at a location, recognition of characteristic 
structural features, and classification as a potential 
vehicle. 

This paper presents the initial results of exploratory 
research to develop a contrast metric based on the 3-D 
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vehicle structure, in natural lighting, relative to typical 
observer perspective. The objective of this research was 
to determine if a contrast metric could be defined based 

Fig. 1. Example images of vehicles, showing distinctive 
shading on different surfaces. 

on the vehicle 3-D structure that would produce improved 
predictions of probability of detection and time to detect 
for military targets in natural backgrounds. 

There is a substantial body of prior research suggesting 
that the perception of 3-D structure as a result of shape- 
from-shading is a significant factor in visual search and 
target acquisition. (Depth perception from visual parallax 
is insignificant at tactical ranges. For a stationary 
observer and a stationary target, shading and prior 
knowledge of vehicle appearance are the primary factors 
in 3-D shape perception.) 

Marr [1982] coined the term "the 2V2-D sketch" to refer 
to the perception of a 3-D structure from surface 
primitives. Sun and Perona [1996] showed that 3-D 
shading produced "pop-out" detection (i.e., response time 
independent of the number of distracters, indicative of 
pre-attentive parallel processing). They also showed that 
search became serial (time linear in the number of 
distracters) when the 3-D shading was removed even 
though the edge structure was retained. Tarr and Kersten 
[1998] concluded that the human visual system uses 
illumination angles to extract 3-D shape, and that 
illumination effects (including shadows) are modeled 
with respect to object shape, rather than simply encoded 
in terms of their effects in the image. Jonides and 
Gleitman [1972] and Mack and Rock [1998] both 
demonstrated that pre-attentive object recognition directs 
visual attention. Liu, Knill and Kersten [1995], and Liu 
and Kersten [1998] found that human efficiency 
exceeded 100 percent of an ideal 2-D observer for 3-D 
object  classification.     Moore  and  Cavanagh  [1998] 

demonstrated that perception of 3-D shape is possible 
from limited surface shading information, given 
familiarity with the 3-D object. Ullman [1996] has shown 
that observers use 3-D operations to recognize familiar 
objects presented in novel orientations. 3-D surface 
matching is also an approach being pursued for automatic 
object recognition systems designed to work in clutter 
with partially occluded targets (e.g., [Johnson and Hebert, 
1998]). 

MODELING APPROACH 

Contrast, Size and Signature Metrics 

This exploratory investigation employed a simplistic, 
low-resolution approach. If 3-D shading is a significant 
factor in search and target discrimination, then the effects 
should be apparent even though coarse analytic 
techniques were used. If coarse analysis does not reveal 
an effect, then the effect, if present, is probably not strong 
enough to be worth addressing in search and target 
acquisition models. 
The conceptual 3-D vehicle model was based on the 3 
cardinal surface orientations of a rectangular solid 
(vertical front, vertical side, and horizontal top). While 
military vehicles are not rectangular solids, the 3-region 
geometric model can be adapted with a little work. The 
projected view of a vehicle was divided into the 
following three regions (see figure 2): 

1. Front/rear. The near-vertical, negatively sloped or 
self-shadowed portion of the front (or rear depending 
on the presented aspect). For armored vehicles this 
includes the lower glacis, front track/tire, and turret- 
chassis gap. For trucks, this includes the front grill, 
front of the cab, and front of the tires. 

2. Side. The near vertical (e.g., within 10 degrees), 
negatively sloped or self-shadowed portion of the 
side, including the sides of the tracks or tires. 

3. Top. All horizontal and near-horizontal surfaces up 
to a slope of 80 degrees. This includes all the small 
miscellaneous objects and protrusions on the vehicle. 
It includes the the upper glacis, top deck, roof, rear 
deck, turret armor. It also includes the sloped rear 
roofoftheHMMWV. 

These canonical surfaces are meant to identify the major 

,*.t\-Of .•«> 
Fig. 2. Illustration of canonical front (rear), side, and 

top vehicle surfaces. 
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vehicle surfaces that typically have distinctive luminance 
resulting from different self-shadowing and angles 
relative to the observer and illumination. They address 
only the grossest level of 3-D structure. This level of 
resolution may be too coarse for modeling higher levels 
of target discrimination. 

These regions also correspond to key structural features 
reported in field tests: darkly shadowed lower glacis, 
side profile, glint off roof or deck, lower grill, cab front, 
turret-chassis shadow. It is possible that the three surface 
orientations are significant because they correspond to 
important features for vehicle discrimination. It is also 
possible that the features are important because they 
reveal the 3-D structure. 

The 44 Search_2 digital images [Toet, et al., 1998] were 
used in the demonstration analysis. All 44 images were 
used with no exceptions. The images were analyzed 
using Adobe Photoshop© to outline regions and compute 
gray-scale values. The local surround was taken to be a 
band surrounding the target with width equal to the target 
height. 

The average gray-scale values for each region j, Gj, were 
converted to luminance values, Lj, via the calibration 
equation provided by Toet, et al., [1998]: 

Lj = f{Gj) - 64.32 [ ( Gj - 18 ) / ( Gj + 91.22) ] 23 

Since the calibration is a non-linear equation, a more 
accurate approach would have been to first convert pixel 
gray-scale to luminance, then compute the statistics. 

The contrast for region j, Cj, is defined as the absolute 
value of the difference between the mean luminance of 
the region, Lj, and the mean luminance of the surround, 
Lbkg: 

Q = I Lj - Lbkg I 

The vehicle contrast ratio metric, Cveh. is the area- 
weighted average of the contrasts of each of the three 
regions, divided by the luminance of the local 
background: 

Cveh = E Wj Cj / Lbkg 

where the weights, Wj, are the proportion of the presented 
vehicle area contributed by each region. 

Two alternative contrast metrics were examined to 
provide a basis for relative comparison. These were the 
traditional area-weighted-average contrast [Ratches, et 
al., 1975] and the RSS contrast [D'Agostino, et al., 
1997]. Both were computed by applying the non-linear 
gray-scale to luminance transform, f(), to statistics 
computed on the gray-scale images. 

Signature metrics based on the area-weighted average 
contrast were uncorrelated with search performance (r2 on 
the order of 0.3). Area weighted average contrast is not 
addressed in the remainder of this paper. This contrast 
metric was rejected. 

The RSS contrast metric has been found to be an 
effective metric in other studies [D'Agostino, et al., 
1997]. It is used as a reference for comparison with the 
3-D structure contrast. 

The RSS contrast ratio is the root-sum square of the 
target-background luminance difference and the target 
luminance standard deviation, divided by the mean 
background luminance: 

RSS = [(utgt-ubkg)2 + o-tgt
2]1/2/u«£g 

For this comparison, the luminance standard deviation 
was estimated from the gray-scale mean and variance: 

s2 -.1/2 o^=[fnug
2+ovr^-f(ug)

2] 
where f() is the gray-scale-to-luminance calibration 
equation. 

The signature metric, Sveh, used in the analysis is simply 
one divided by the product of the vehicle size measure, 
Vveb, and vehicle contrast measure, C^: 

Sveh = 1 ' ( Vveh ^veh ) 

The size metric in this analysis was the target minimum 
dimension, generally the vertical extent or height. 
Vehicle height was the measure of size used in the early 
Night Vision Laboratory target acquisition modeling 
[Ratches, et al., 1976]. Target height (vertical extent) 
was reported in the Search_2 documentation. 

Two alternative size metrics have been proposed as 
alternatives to target rninimum dimension: the vehicle 
presented area, and the square root of the presented area 
[D'Agostino, et al., 1997]. These size metrics were 
examined, but their performance was inferior to target 
height. Only analysis results using height are presented. 

Search Model 

The analysis employed the traditional search performance 
model that expresses probability distribution of detection 
over time as the product of a limiting probability of 
detection (P^f) and a negative exponential distribution: 

Pd(t) = Pi„f*(l-e -<t-E)/Td 

where e is the rninimum reaction time (nominally 1.0 
seconds) and Td is the mean time to detect given that a 
detection occurs [Washbum, 1981] [Ratches et al., 1975]. 
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In the perception test subjects were given 60 seconds in 
which to search and respond [Toet, et al., 1998]. Toet 
reports the mean search time plus reaction time. To 
obtain the parameters of the search model, the effects of 
the 60-second response window and reaction time must 
be discounted. Assuming the negative exponential 
distribution of search time, given that a detection occurs, 
mean search time, discounting windowing and reaction 
time, can be computed from the reported mean search 
time, Ts: 

Td = (Ts-s)/(l-e -(60-eVTs 
) 

Toet et al. [1998] also reports the number of detections, 
Nd, false alarms, Nf, and misses, Nm. Probability of 
detection within 60 seconds can be calculated from this 
data: 

Pd(60) = Nd / ( Nd + Nf + Nm ) = Nd / N 

In the test image set, only one image had Pd(60) less than 
0.4, three images had Pd(60) less than 0.5, five images 
had Pd(60) less than 0.6, and 24 images had Pd(60) 
greater than 0.95. Figure 3 shows the relative number of 
detection, false alarm and time-out (miss) responses in 
the perception test. 

Pmf is computed from Td and Pd(60) 

P1nf=Pd(60)/(l-e-(60-e"rd) 
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Fig. 3. Numbers of detections, false alarms, and time- 

out responses per image in the test. 

The effects of the 60-second response window and the 
constant reaction time delay are minor. Td is close to a 
linear function of Ts (1^=0.993) and P,nf is close to a linear 
function of Pd(60) (r2=0.992). 

P-infinity Model 

Given an unlimited search time, there are three possible 
outcomes: the observer can detect the target, false alarm, 
or conclude that there is no detectable target in the scene. 
Each of these is an absorbing state. As soon as the 
observer enters any one of these states, the search is over. 
Whenever a detection occurs, it is conditioned on having 
occurred before a false alarm and before the observer 

concludes that there is no target in the scene. In order 
for the conditional time to detect to have a negative 
exponential distribution, two criteria must be met: 

(1) target detection, false alarms, and conclusion that no 
target is in the scene must be independent processes; 
and 

(2) each  of these  processes   must  have   a  negative 
exponential distribution (albeit with different rates). 

Under these conditions, the mean time to detect, 
conditioned on detection occurring first, is one over the 
combined response rate, R (R equals the sum of the 
individual rates of detection, Rj, false alarm, Rf, and 
concluding no detectable target is present, Re): 

Td=l/R=l/(Rd + Rf+Rc) 

Pj„f is simply the ratio of the rate of true detection to the 
combined rates: 

P,nf=Rd/(Rd + Rf+IU 

These rates can be computed from the available data: 

Rd = (Nd/N)R/(l-e-59R) 

Rf=(Nf/N)R/( l-e-59R) 

Rc=(Nm/N-e-59R)R/(l-e-59R) 

The expected number of observers that decided no 
detectable target was present is equal to the probability of 
miss minus the probability that none of the three 
processes completed in the response window. Cinlar 
[1975] and Washbum [1981] provide details of the 
mathematics of competing Markov processes. 

The perception test in which the Search_2 data was 
collected used 35 mm slides with targets present in every 
scene. The subjects knew that each scene contained a 
vehicle. The subjects also knew that they had only 60 
seconds in which to search the scene. Under these 
conditions, the subjects would presumably continue 
searching for the full 60 seconds. Since they knew a 
target was present, they would not conclude no detectable 
target was present within the first 60 seconds. This 
implies that R- should be zero. 

This hypothesis is supported by the data. The mean value 
of Re, computed over the 44 images, is 0.0005, and the 
standard deviation is 0.0018 (almost 4 times the mean). 
R; is not statistically significantly different from zero, 
and even if it was, it is so small as to be insignificant for 
this analysis. The remainder of the paper disregards R;. 

Figures 4 and 5 show the distribution of the rate of target 
detection, Rt, and the rate of false alarm, Rf. Note that 
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the scales on the two graphs are an order of magnitude 
apart. Rt is greater than Rf for 43 of the 44 scenes. 

The mean time to detect a target, given that a detection 
occurs, discounting the effect of false alarms is 

When the effects of false alarms are discounted, P^ has 
value one. The probability that a detection occurs within 
60 seconds, discounting the effect of false alarms can be 
computed directly from the response data on the numbers 
of detections and missed targets 

Pd(60 | no false alarms) = Nd / (Nd + Nm ) 

When the effects of false alarms are discounted, P^ has 
value one. The probability that a detection occurs within 
60 seconds, discounting the effect of false alarms can also 
be estimated from the computed from the unconstrained 
mean time to detect a target without false alarms, Tt: 

Pd(60 | no false alarms ) = ( 1 - £*****) 

The root-mean-square (RMS) difference between these 
two estimates is 0.036, comparable to the sampling error 
in Pd(60). 

Pi„f and Td are modeled as simple linear functions of the 
signature metric. The model parameters (slope and 
intercept)   are   estimated   from   the   data   via   linear 

regression. The related measures of search performance 
(Pd(60), Pd(60 | no false alarms), Ts and Tt) are modeled 
as functions of P^f and Td using the preceding search 
model equations. 

ANALYSIS RESULTS 

Gray-Scale Variance in the Vehicle Image 

Partitioning the projection of the vehicle into the front, 
side and top regions accounted for 63 percent of the gray- 
scale variance over the entire target region. The area- 
weighted sum of the gray-scale variance within the three 
regions was 37 percent of the gray-scale variance over 
the entire target region. 

This indicates that these vehicle regions account for a 
significant proportion of the gray-scale variance in 
images of ground vehicles. Sources of residual variance 
include small features defining local surfaces with 
different orientations and self-shadowing, paint patterns, 
shadows from trees falling on the vehicle, and patches of 
foreground obscuration. 

The RSS contrast metric includes all variance over the 
vehicle, regardless of structural significance or spatial 
scale of the variation. The RSS contrast and 3-D 
structure contrast have a strong statistical linear 
relationship (r = 0.90). 

Sampling Error in the Search Performance Data 

Sampling errors are inherent to any test procedure with a 
finite number of subjects. If the identical experiment 
were repeated with different subjects, the results would 
differ due to sampling error and the stochastic nature of 
search and detection. 

Pd(60) is estimated as the proportion of observers 
correctly detecting the vehicle. Assuming observer 
responses are independent, the sampling error has a 
binomial distribution. For a given image, the one-sigma 
sampling error in Pd(60) is given by the following 
equation: 

crpd = [Pd(60) * (l-Pd(60) )/N]"2 

where N is the number of subjects (N = 62). 

Figure 6 shows a plot of sampling error in Pd(60) versus 
observed Pd(60) for the 44 Search_2 images. The RMS 
sampling error in Pd(60) over the entire Search_2 image 
set is 0.0363. The standard deviation in measured Pd(60) 
over the entire image set is equal to 0.187. Sampling 
error explains 3.8 percent of the variance in Pd(60) over 
the image set. 

The long-run probability of detection, P^, was not 
measured directly, but was computed from measured 
data. This makes the effects of sampling error difficult to 

270 



0.07 
• •    •. 

0.06 •. 

0.05 • • • 
0.04 • 

0 
0.03 

• 
• 
• 

0.02 
• 
• 

0.01 

0.00 
0 0        0.2         0.4         0.6        0.8         1.0 

Prt(60) Observed 
Fig. 6. P/60) vs. Sampling Error in Pd (60). 

compute. However the effects of sampling error can be 
approximated by assuming the random variables were 
measured. The sampling error in Pmf is 0.036, explaining 
4.4 percent of variance. 

The probability of detection in 60 seconds absent the 
effects of false alarms, Pd( 60 | no false alarms) is 
computed directly from the recorded data. The sampling 
error in Pd( 60 | no false alarms) is 0.025, explaining 3.8 
percent of variance. 

The mean search time reported, Ts, is a constant reaction 
time (e = 1.0 sec) plus a random variable with a negative 
exponential distribution truncated at 60-e seconds. For 
this analysis the standard deviation is approximated by 
the standard deviation of a negative exponential random 
variable with the same mean (i.e., no truncation). The 
standard deviation of a negative exponential random 
variable is equal to the mean. Since Ts is computed 
using response time data only for subjects who detect the 
vehicle, for any given image the sampling error is equal 
to Ts divided by the square root of the number of subjects 
who correctly detected the vehicle: 

oTd = (T5-ct)/[NPd(60)]1/2 

Figure 7 shows a plot of sampling error in Ts versus Ts 
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Fig. 7.  Ts Obs vs. sampling error in 7"t 

for the 44 Search_2 images. The RMS sampling error in 

T, over the entire Search_2 image set is 2.4 seconds. The 
standard deviation in measured Ts over the entire image 
set is equal to 7.58 sec. Sampling error explains 10.3 
percent of the variance in Ts over the image set. 

The unconstrained mean time to detect, Td, and the 
unconstrained mean time to detect in the absence of false 
alarms, Tt, were not measured directly, but were 
computed from measured variables. This makes the error 
due to sampling difficult to compute. The effects of 
sampling error can be approximated by assuming the 
random variables were measured. Both random variables 
have negative exponential distributions, so the 1-sigma 
sampling error is equal to the mean divided by the square 
root of the number of responding subjects. The estimated 
sampling error in Td is 2.7 seconds, explaining 9.8 
percent of variance. The estimated sampling error in T, is 
11.3 seconds, explaining 11.5 percent of variance. 

Model Explanatory Power 

The model has four free parameters that must be 
estimated from data: the slope and intercept of Pmf as a 
function of the signature metric, and the slope and 
intercept of Td as a function of the signature metric. 

The explanatory power of the model is measured by the 
percentage of variance in the observed search 
performance accounted for by the model. This is 
computed from the root-mean-square error between the 
model and observed data, and the variance in the 
observed data: 

%Var = 100 (1 - RMS_ Error / Observed_Variance) 

For a linear fit with parameters estimated via linear 
regression, the percentage of variance explained is equal 
to 100 times the Pearson correlation coefficient squared 
(r2). Since the search model equations are non-linear, the 
percentage of variance accounted for is computed from 
the RMS error. 

Figure 8 shows a scatterplot of the mean time to detect a 
target, given that the target is detected before a false 
alarm, but unconstrained by the 60 second time window 
of the experiment. The experimental value of Td is 
computed from the measured search time. The model 
estimate of Td is a linear function of the signature metric 
fit to the observed Td. 

Figure 9 shows a scatterplot of Pu,f computed from the 
observed test data versus the linear function of the 
signature metric fit to the observed P^ and truncated at 
one. Experimental values of Pinf are computed from Td 

and raw response tallies. 
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Figure 10 shows a scatterplot of the probability of target 
detection in 60 seconds computed directly from the tallies 
of observer detections, false alarms and misses, versus 
the model Pd(60) computed from Pi„f and Td. The results 
are very similar to the P^ results because, in most cases, 
the mean search time was much less than the 60 second 
response window. 

Figure 11 shows a scatterplot of the mean search time 
measured in the experiment, versus the mean search time 
calculated by the model accounting for the effects of 
competing false alarms and the 60 second response 
window. These results resemble the results for 
unconstrained search time because, in most cases, the 
mean search time was much less than the 60 second 
response window. 

Figure 12 shows a scatterplot of the mean time to detect a 
target without the requirement that the target detection 
occurs before a the first false alarm, Tt. It is the inverse 
of the rate of target detection. It is computed as Td 

divided by Pinf. The experimental and model values of T, 
are computed from the experimental and model values of 
values of Td and Pj„f. When the RSS contrast is used 
instead of the 3-D structure contrast, the percent of 
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variance accounted for drops from 95 to 89 percent. 

Many of the data points in figure 12 are clustered near the 
origin. The correspondence for low response time cases 
is seen more clearly when the logarithm of T, is plotted 
(see figure 13). The logarithm operation is a non-linear 
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Table 1. Model Explanatory Power 

transformation, so the percent of variance accounted for 
is different. 

Interestingly, the percent of variance accounted for by 
Ln( Model T,) is equal to the percent of variance 
accounted for by linear regression of the signature metric 
directly on Ln( Observed T,). When the RSS contrast is 
used instead of the 3-D structure contrast, the percent of 
variance accounted for drops from 74 to 66 percent. 

Figure 14 shows a scatterplot of the probability of target 
detection in 60 seconds, without competition from false 
targets, i.e., excluding false alarms. The experimental 
value is computed from the tallies of detections and 
misses. The model value is computed from T,. 
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1.0 

% Var 

Search Performance Measure 3-D RSS 

Unconstrained Time to Detect, Td 78.6 77.8 

Pinf 77.9 76.0 

Search Time, Ts 76.1 75.2 

Pd( 60) 80.2 78.6 

Detection Time Sans F.A., T| 95.0 88.5 

Pd( 60 I No False Alarms) 88.9 86.5 

Table 2. Maximum Model Error 

Max Error 

Search Performance Measure 3-D RSS 

Unconstrained Time to Detect, Td 13.3 11.9 

Pinf 0.30 0.31 

Search Time, Ts 10.0 9.0 

Pd( 60) 0.30 0.31 

Detection Time Sans F.A., Tt 28.6 60.2 

Pd( 60 | No False Alarms) 0.15 0.19 

The results have several significant implications: 

1. Signature metrics based on both the 3-D structure 
contrast metric and on the RSS contrast metric 
account for large proportions of the variance in 
search performance for this data set. 

2. The 3-D structure contrast metric accounts for one to 
two percentage points more variance than the RSS 
contrast metric, except for the mean time to detect, 
absent false alarms where there is a 6.5 percentage 
points difference. This indicates that the 3-D 
structure contrast is a better measure observer 
response to the target signature. When the effects of 
false alarms are included, the additional variance due 
to this non-target source obscures the difference 
between the two contrast metrics. 

Tables 1 and 2 summarize the results of the comparison 
of the model to the data, and compare results obtained 
using the 3-D structure contrast metric with those 
obtained using the RSS contrast metric. Table 1 presents 
the percent of variance explained by the model. Table 2 
shows the magnitude of the maximum model error. 

The percentage of variance predicted by both metrics 
is significantly higher when the effects of false 
alarms are discounted. This is not surprising since 
the signature metrics do not measure potential false 
targets. The difference is greater for 3-D structure 
contrast than for the RSS contrast, further supporting 
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the claim that 3-D structure contrast is a better 
measure of the effects of the target signature. 

4. The difference in the percent of variance predicted 
with and without the effects of false alarms indicates 
the magnitude of the contribution of false targets to 
search performance variance. By this measure, false 
targets account for over 15 percent of the variance in 
the mean time to detect a target, and almost 9 percent 
of the variance in the probability of target detection 
within 60 seconds. 

5. The maximum error in Pd( 60 | no false alarms) is 
significantly lower that the maximum probability 
error when the effects of false alarms are not 
excluded. 

6. The magnitude of the maximum detection time sans 
false alarms is large. However this error occurs at 
the one hard-to-detect image, for which Tt was 218 
seconds. The error, as a percentage of the time for 
that data point, is 13 percent for the 3-D structure 
contrast metric and 28 percent for the R.SS metric. 

Several excursions were conducted to assess alternative 
vehicle size metrics. When the signature metric was 
calculated using the square root of the presented area 
instead of the target height, the percent of variance 
predicted was approximately 12 percentage points lower 
for Pinf and 3 percentage points lower for Td. When the 
presented area was used, the results were 15 percentage 
points lower for Pinf, and 6 percentage points lower for 
Td- 

Signature Metric Measurement Error 

Measurement error occurs because the original images 
were blurred. The boundaries of the vehicles and regions 
in the vehicles were not sharply delineated. This affected 
both the measurement of target vertical extend and 
luminance. Not only was the location of the boundary 
uncertain, but pixels near the boundary contained a mix 
of target and background luminance, or a mix of the 
luminance between two regions. 

Two separate estimates of the 3-D structure contrast ratio 
were made. Toet et al., [1998] provided one 
measurement of target height. A second independent 
measurement was made in this study. These 
measurements provided two pair of independent 
measures of the signature metric. Each independent pair 
of estimates produced one estimate of the measurement 
error in the signature metric. 

The one-sigma measurement error in the signature metric 
over the Search_2 image set is 0.016. Since the model is 
linear, the measurement error in the predictions of Pj„f 
and Td are 0.016 times the magnitude of the slope (-2.313 
and 92.11 respectively). This analysis yields a one-sigma 
measurement error in the predictions of 0.036 for P^f and 

1.473 for Td respectively. The measurement errors in the 
predictions of P^ and Td are less than the sampling errors 
in the perception test estimates of P^ and Td (0.036 and 
2.7 seconds respectively). 

In combination, the variance due to sampling error and 
signature metric measurement error together are 9.1 
percent of the Pjnf variance predicted by the model, and 
18.5 percent of the variance in Td predicted by the model. 
The predictive power of the signature metric cannot be 
the result of spurious sampling and measurement errors. 

The signature metric is one over the product of the 
vehicle 3-D structure contrast and the vehicle height. 
Two measurements of height and contrast were made, to 
obtain two pairs of independent measurements of the 
signature metric. The two correlations between the two 
pair of signature metric measurements were 0.986 and 
0.979. The sample standard deviation for a pair of 
independent measurements is simply the difference 
between them. The error estimate for two pairs of 
independent measurements is the RMS of the two 
estimates of the sample standard deviation. 

Figure 15 presents a plot of the signature metric 
measurement error sample standard deviation versus the 
signature metric value. The correlation is 0.91, suggest a 
strong linear relationship with slope equal to 0.15. As 
expected, the measurement error is larger for small, low- 
contrast vehicles than for large, high-contrast vehicles. 
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Accounting for Residual Variance 

The model accounts for 75 to 80 percent of the variance 
in the experimental data when the effects of false alarms 
are included, and 90 to 95 percent of the variance when 
they are discounted. This suggests that for the TNO 
Search_2 data and test, false alarms account for 10 to 15 
percent of the variance in probability of detection and 
search time, respectively. 
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Sampling error accounts for approximately 4 percent of 
the variance in probability of detection and 10 percent of 
the variance in search time. Together the target 
signature, false alarms, and sampling error are sufficient 
to account for all of the variance in the experimental data. 
(It is not possible simply to sum the percentage of 
variance explained by sampling error with the percentage 
of variance explained by the signature metric because of 
spurious correlation when the model parameters were 
estimated from the data). 

The signature metric was calculated by applying the non- 
linear gray-scale-to-luminance transform to the mean and 
RMS gray-scale values. The correct method is to apply 
the gray-to-luminance transform to the image, then 
compute statistics. This approximation may account for 
some of the residual variance. 

The contrast metric did not include any measure of color 
contrast or texture differences. The metric did not 
address chromatic, luminance or contrast adaptation, or 
spatial filtering. The metric did not address the effect of 
the position of the target in the scene, or its position 
relative to other features that might attract of inhibit 
attention to the target location. These factors may 
contribute to the model error, but the effect is likely to be 
small because the unexplained error is small. 

These data indicate that height and 3-D structure contrast 
were largely independent dimensions, which individually 
were moderately correlated with search performance. 
Not surprisingly, their product was well-correlated with 
search performance. The same statements are true to a 
lesser extent for the RSS contrast metric. 

Spurious Correlation and Predictive Power 

When the same data are used to calibrate and evaluate the 
model, the percentage of variance accounted for is an 
accepted measure of explanatory (descriptive) power, but 
it is not truly a measure of the model's predictive power. 
In order to assess the model's predictive power, the 
model must be calibrated to one data set, then the 
prediction error evaluated for a separate, sequestered data 
set. This minimizes the effects of spurious correlation. 

The Bootstrap statistical technique [Davison,. 1997] was 
used to evaluate the predictive power of the signature 
metric. The Bootstrap technique involves repeated 
random partitioning of the data into two disjoint sets: the 
calibration data set containing, and the validation data set. 
The model parameters are estimated from the calibration 
set, then the RMS prediction error is calculated from the 
sequestered validation data set. Each partition produces 
an estimate of the variance predicted by the model. 

There is no term that can be added to the signature metric 
to account for the residual variance. The prediction errors 
in Pjnf and Td are only weakly correlated (r2 = 0.14). This 
suggests that once target signature effects are discounted, 
probability of detection and search time are sensitive to 
different processes and/or have non-linear relationships 
with image characteristics. 

Individual Effects of Size and Contrast 

One over the 3-D structure contrast metric was modestly 
correlated with perception test data (r2 = 0.7 for Td and 
0.6 for Pint). The percentages of variance explained for T, 
and Pd( 60 | no false alarms ) were 51 and 54 percent. 
The RSS contrast metric had comparable correlation to Td 

and Pi„f, but accounted for 10 percentage points less of 
the variance in T, and Pd( 60 | no false alarms ). The area 
weighted average contrast ratio had essentially no 
correlation with Td or P„,f. 

Target height, area and square root of area were only 
weakly correlated with Td and P mf (r2 approximately 
equal to 0.4). Height had some correlation with T, and 
Pd( 60 | no false alarms ) with r2 on the order of 0.2. For 
area and square root of area, accounted for less than 10 
percent of variance in T, and and Pd( 60 | no false alarms 
)• 

Height was less correlated with the 3-D structure contrast 
metric than it was with the RSS contrast metric (r2 = 0.3 
for the 3-D structure contrast metric, versus 0.4 for the 
RSS contrast metric). 

In this particular application of the Bootstrap technique, 
the calibration and validation data sets each contained 
half of the data points. Twenty-two calibration data 
points were used in the linear regression to estimate the 
model parameters, and 22 data points in the validation set 
were used to measure the RMS error and the percent of 
variance in the validation data set predicted by the model. 
Two-hundred-fifty-two (252) random partitions were 
generated to compute the Bootstrap statistics. 

The Bootstrap analysis was applied to investigate the 
ability of the signature metric to predict the logarithm of 
the mean time to detect a target in the absence of false 
alarms, T,. T, was chosen as the dependent variable 
because it had the clearest causal relationship to the 
signature metric. The logarithm of Tt was used because 
of the uneven distributions of observed T, and for the 
signature metric (see figures 12 and 13). 

Figure 15 shows the distribution of slope and intercept 
from the 252 partitions. The slope had median value 
14.6, equal to the slope when all 44 points are used in the 
regression (theBootstrap mean and variance are 15.0 and 
1.6 respectively). The intercept has a median value of 
0.89 compared to 0.90 when all 44 points are used in the 
regression (the Bootstrap mean and variance are 0.88 and 
0.14 respectively). 

Figure 16 shows the distribution of the percentage of 
variance in the calibration data sets versus the percentage 
of variance predicted in the validation data sets. The 
median percent of variance predicted in the validation 
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data sets is 72 percent (the mean and variance are 70 
percent and 10 percentage points, respectively). The 
median percent of variance explained in the calibration 
data sets is 78 percent, compared to 76 percent when all 
44 points are used in the regression (the Bootstrap mean 
and variance are 76 percent and 9 percentage points, 
respectively). On average (median and mean) the 
proportion of variance predicted in the validation data set 
is 92 percent of the proportion of variance accounted for 
in the calibration data set. This difference is due to 
spurious correlation, and indicates the difference between 
the explanatory and predictive power of the signature 
metric. 

FINDINGS AND OBSERVATIONS 

The traditional model of the distribution of search time 
was a useful model to analyze the experimental data. 

With appropriate choice of definition of size and contrast, 
the simple signature metric equal to one over the product 
of size and contrast is a good fit to the observed data. It 
explains 75 to 80 percent of the variance in the test data, 
and 90 to 95 percent when the effects of false alarms are 
discounted. 

The organization of the vehicles into three regions based 
on their orientation relative to the illumination and 
observer accounts for a significant portion of the gray- 
scale variance. Not surprisingly, the 3-D structure 
contrast metric and the RSS contrast metric are highly 
correlated and produce comparable results. 

Nonetheless, the 3-D structure contrast metric is 
consistently superior to the RSS contrast metric, 
especially when the effects of false alarms are 
discounted. Variance due to false alarms obscures the 
difference in performance for the two contrast metrics. 
Both contrast metrics are far superior to the area 
weighted average contrast (which is no good at all). 

Vehicle height is a better measure of target size, for use 
in product with a contrast metric, than either vehicle area 
or square root of vehicle area. 

Responses to false targets, i.e., false alarms, account for a 
10 to 15 percent of the search performance variance. 
Modeling the rate of false alarms as a function of the 
image properties has potential to improve search 
modeling. 

There are a number of low-level and high-level visual 
phenomena not represented in this simple signature 
metric. Low-level factors include color contrast, 
chromatic and luminance adaptation, spatial filtering and 
contrast adaptation. Mid-level image processes include 
pre-whitening, edge detection and texture segregation. 
Beyond the vehicle structure, high-level (top-down) 
image properties include the location of the vehicles 
relative to terrain features that might attract attention or 
direct attention away, and position of the vehicle in the 
image. 

These factors could account for the unexplained variance. 
However, they were not major contributors to search 
performance variance in the Search_2 image set. These 
factors could be more significant in other image sets 
containing greater variation on these dimensions. 

The Search_2 vehicles do not present significant 
perceptible camouflage. Camouflage adds variance to the 
image. The RSS contrast metric will yield higher values 
for vehicles with camouflage than for vehicles without 
camouflage (assuming the same mean luminance), and 
thus will predict higher P„,f and lower Tj for camouflaged 
vehicles than for comparable non-camouflaged vehicles. 
The 3-D structure contrast metric is camouflage-neutral 
since it is based only on the mean luminance of different 
target regions and does not incorporate any higher-order 
statistics. 

The Search_2 vehicles do, in some cases, have 
perceptible structures within the front, side and top 
regions. This increases Pinf and decreased Td. These 
structures add variance to the image, which increases the 
value of the RSS contrast metric, which leads to higher 

276 



predicted P„,f and lower predicted Td. The 3-D structure 
contrast metric is neutral with respect to structures within 
the three regions. 

Moore, C. and P. Cavanagh, Recovery of 3D Volume 
from 2-Tone Images of Novel Objects, Cognition 67.1-2: 
45-71, 1998. 

Neither the 3-D structure contrast metric nor the RSS 
contrast metric are able to distinguish modulation due to 
internal structure from modulation due to camouflage or 
foreground obscuration (e.g., brush or nets). More 
sophisticated signature analysis is needed to make this 
distinction. 
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Abstract 
In an effort to test and expand the usefulness 
of classifiers for U. S. Army applications, 
the U.S. Army Research Laboratory has 
begun an effort to create a large database of 
synthetic infrared images of vehicles. This 
database, once created, will be made 
available to qualified organizations for 
testing and evaluating their 
detector/classifier algorithms. 

To date we have achieved an overall 50% 
recognition rate for a four vehicle database 
of real images, training our classifiers solely 
on synthetic data. It is expected that 
refinements to both the databases and the 
classifiers will improve this result. 

In the discussion to follow, we will present 
the means to create the database, and the 
methods for and results of training and 
testing classifiers. 

Introduction 
Classifiers trained on real images of real 
vehicles have performed unreliably when 
tested on real images from other data 
collections. This is in part due to the large 
number of target classes and aspects, high- 
clutter background, sensor noise, and 
variations caused by translation, rotation, 
and scaling of vehicles. The problem is 
further complicated by inconsistencies in the 
signature of the vehicles, similarities 
between the signatures of different vehicles, 
limited training and testing data, obscured 

vehicles, and difficulty in using contextual 
information when it is available to the 
recognition system. These problems suggest 
that exploring data diversification and/or 
clutterless data may be useful in improving 
current classifier results. 

To test these hypotheses we, at the U. S. 
Army Research Laboratory (ARL), are 
developing an image database of tens of 
thousands of synthetic infrared (IR) images 
of vehicles consistent with those in the 
COMANCHE IR database of real images. 
The COMANCHE database consists of 
approximately 15,000 vehicle images 
representing different image instances of 10 
different vehicles, collected at three different 
geographical locations. 

As a preliminary test, we created a small 
database of approximately 8000 synthetic 
vehicle images representing 4 of the 10 
vehicles in different states of operation. For 
these same four vehicles there were 
approximately 6000 images in the 
COMANCHE database. Vehicle geometry 
and temperature distribution were derived 
using a BRLCAD/FRED/PRISM generator. 
Long wave infrared images (LWTR) were 
created using ARL's CREATION scene 
generator which alsoprovided the sensor 
model. The variations we considered were 
sensor to vehicle viewing aspect, time of 
day, time of year, longitude and latitude, 
direction of vehicle motion, and operating 
status. 
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This paper describes the synthetic image 
generator, the classifier, and the results of 
our training and testing this classifier using 
the synthetic and real image databases. 

System Description 
Figure 1 shows a schematic of the 
algorithmic methodology for the generation, 
training, and testing of the synthetic image 
database. Four programs were used to create 
the synthetic image database: BRL/CAD, 
FRED, PRISM, and CREATION. 

The first three of these programs are used in 
series to create a temperature map of the 
vehicle. First, a CAD model of the vehicle 
is created in BRL/CAD by combining the 
intersection of multiple simple solid forms. 
These models contain descriptions of both 
the material and geometrical properties of 
these solids. At present, we have BRL/CAD 
models for 9 of the 10 vehicle types in the 
COMANCHE database. 

After paring such a model down to a 
workable number of parts, FRED converts 
the solids into a series of multiply connected 

facets in the form of multisided polygonal 
plates. PRISM then combines the model's 
geometrical and material properties with 
weather, terrain, geographical location, time 
of day and year, and vehicle exercise 
information. This combination of data, 
when fed into the physical model of the heat 
production and transfer mechanisms, 
produces a temperature or radiance map for 
each facet at specific times throughout the 
duration of the exercise period. 

Next, given these geometrical and time 
dependent temperature maps, CREATION 
renders tens of thousands of image instances 
of the vehicle as detected by an imaging 
sensor placed anywhere in the space 
surrounding the vehicle. Range plus sensor 
parameters, such as field of view (FOV) and 
optical bandpass can be varied to control 
image size and quality. Effects from 
atmospheric transmission, ground, sky, and 
solar radiance can also be added to adjust 
the image intensity. Finally accurate terrain 
maps from many real-world geographical 
locations can be chosen, which one then 
places the vehicle. 
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CREATION 

REAL DATA 

Figure 1. Methodology for the generation, training, 
The classifier algorithm is used to train and 
test the synthetic images. Over the past 
three years two classifiers were developed at 
ARL for the training and testing of real IR 
images. One is a learning vector quantizer 
(LVQ) [1] and the other is a modular neural 
network (MNN) [2]. We chose to begin 
classification studies using the LVQ, since it 
is easy to interpret its performance, easy to 
analyze the results, and subsequently easier 
to determine how to improve the synthetic 
image database on the next iteration. Later 
we expect to use the MNN classifier. A 
description of the LVQ classifier follows in 
the classifier section. 

Synthetic Data Preparation 
For the purposes of this research, the 
validation of synthetic images of vehicles is 
defined to mean the extent to which such 
synthetic images can be used to train a 
classifier to recognize real images of 
vehicles. Thus, we determined early on that 
creating realistic synthetic images would be 
dependent on two real-world measurements: 
actual vehicle temperatures of specific 
vehicle parts and actual images of vehicles. 

and testing of the synthetic image database. 

Based on other PRISM validation research, 
the BRL/CAD/FRED/PRISM trio of 
programs has been used successfully to 
create realistic temperatures accurate to 
within 2 to 4 ° C. But "create", we quickly 
found out, is a magical term, honed only by 
paying attention to detail and much 
experimentation. And the degree to which 
we succeed is defined by performance of our 
classifiers. 

Given realistic temperatures for defined 
vehicle states, time of day, and weather 
conditions, "create" is an iterative process. 
But matching a particular temperature 
distribution for a particular set of initial 
conditions does not mean that one can 
predict accurately the future evolution of 
the temperature distribution. 

In May of this year we gathered 
FRED/PRISM compatible files for three of 
the four vehicle types. The fourth was 
obtained in July. A preliminary synthetic set 
of images was generated and visually 
compared to corresponding real images. We 
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noted differences in signatures and adjusted 
the facet structure and heating mechanisms. 
This procedure was then repeated over 
several iterations, paying attention to real 
specific operational temperatures 
distributions where available. 

Figure 2 shows such a comparison. On the 
left are real IR images of the four vehicles, 
and on the right are the synthetic examples. 
It is clear that although there are many 
similarities, there are also many differences. 
Some of the differences are due to time of 
day and vehicle orientation. Nevertheless, it 
is not clear whether such images will be 
effective for training the classifiers. 
Classifier training and testing must be 
performed now, before further adjustments 
are made. 
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Figure 2. On the left are the real-world images of four vehicles. On the right are examples of 
the corresponding synthetic images. For each vehicle, there are 72 aspects representing every 5° 
step, beginning with zero degrees on the upper left, and with the vehicle rotated clockwise, as 
seen from above. 

Classifier Description 
The classifier used in this research, 
developed at ARL.[1], is described by its 
developers as a minimized mean squared 
error encoder. It consists of four stages as 
shown in the schematic in Figure 3 

In the example presented in Figure 3, a set 
of eight aspect windows is used to extract a 

rectangular region of the image, based on 
the assumed aspect of the vehicle. Then the 
extracted region is enlarged into an area of a 
fixed size, decomposed by wavelet 
decomposition, and finally a dedicated 
vector quantizer (VQ) is applied for each 
sub-band within each aspect window. 
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Figure 3. Schematic of LVQ algorithm [1]. 

From this a set of templates, or code vectors, 
is constructed for each sub-band of a 
particular target for a specific range of 
aspects. Each set of code vectors forms a 
codebook, representing the vehicle signature 
for a given sub-band of a particular vehicle 
for a specific range of aspects. A K-means 
algorithm trains the VQ independently by 
updating each code vector in each codebook 
with the average of all the data that are 
within a minimum distance, in terms of a 
Euclidean distance, to that code vector. The 
goal of this learning process is to minimize 
the average distortion, and thus capture the 
contextual similarities among the samples 
that belong to a particular sub-band of the 
intended vehicle and aspect window. The 
training stops when no more changes have 
been made to any of the code vectors. 

For example, Figure 4 shows the 0° "0-0" 
sub-band codebook of the real image data on 
the left, and a sample synthetic data 
codebook for vehicle 3 is on the right. Note 
that having chosen 4 views (front, back, and 
two sides) for our codebooks, we see views 
spanning -45 to +45 degrees for this "0" 
degree codebook. 

During the testing phase, each of the sub- 
bands of the extracted target area is 
represented by a similarity measure that 
compares the given sub-band with the best- 
matching code vector from the 
corresponding codebook. A commonly used 
similarity measure, called the mean squared 
error (MSE), is used to compare a code 
vector and the sub-band being tested. The 
input image class of the group of sub-band 
codebooks produces the smallest MSE. 
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REAL SYNTHETIC 

Figure 4. The Oc sub-band codebooks for vehicle 3 

For simplicity, we are using four aspect 
windows and four wavelet sub-bands for 
each of the four vehicles. In all, a total of 64 
possible paths must be checked for each 
classification. 
Results 
Table 2 shows the results of training on the 
5156 real image database and testing on the 
8000 synthetic image database.. In this case 
no real images were used to train the 
classifier. For this table, and for similar 
tables to follow, the diagonal elements 
beginning in the upper left and descending 
toward the lower right indicate the 
percentage of the vehicles tested that were 
correctly identified. 

Table 3 shows the results of training on the 
8000 synthetic image database and testing 
on the 5156 real image database. 

At present, the overall recognition rate for 
training the VQ classifier on synthetic data 
alone and testing on real data is 50%, 
whereas for training on the real data and 
testing on the synthetic data the result is 
68%. 

Based on our preliminary results, we believe 
that continued refinement of our synthetic 
database will further improve our probability 
of correct identification rates. 

Table 2. A confusion matrix showing the probability for correct synthetic image vehicle 
identification having trained on only real images. 

Probability of Correct Vehicle Identification (%) 
Predicted/Actual Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 

Vehicle 1 79.76 5.11 17.21 0.25 
Vehicle 2 0.15 91.32 51.93 0.00 
Vehicle 3 11.81 2.33 30.61 27.83 
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Vehicle 4 8.28 1.24 0.25 71.92 

Table 3. A confusion matrix showing the probability of correct real image vehicle identification 
having trained on only synthetic images. 

Probability of Correct Vehicle Identification (%) 
Predicted/Actual Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 

Vehicle 1 51.16 13.18 12.13 17.05 
Vehicle 2 39.52 72.60 49.39 20.37 
Vehicle 3 3.96 6.32 26.22 4.81 
Vehicle 4 5.36 7.91 12.26 57.78 

Conclusions 
We began this project hopeful of attaining 
quick results to support further investigation 
into the application of synthetic images for 
the training and testing of vehicle classifiers. 
Each iteration of our database provides more 
realistic and more variable synthetic images. 
The performance of our database has 
steadily improved, and we expect continued 
improvement. 

We have learned to pay careful attention to 
the details of those regions of the vehicle in 
which thermal changes are frequent and 
substantial. Most models needed to have a 
few large regions cut into smaller regions so 
that realistic thermal diffusion could be 
properly represented. 

Validated thermal data for each vehicle are 
needed to help guide our modeling. These 
data may exist, but at present they are not 
available to us. Additional data representing 
the thermal evolution of signatures over time 
are also not available to us or are 
nonexistent. Any help from the research 
community in obtaining such data would be 
greatly appreciated. 

The ultimate purpose of our research to 
derive data capable to aiding the training and 
testing of classifiers. It is the intent of ARL, 
when this work is completed, to make the 

entire 10-vehicle synthetic database 
available to qualified organizations. 
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ABSTRACT 

The area of automatic target classification has 
been a difficult problem for many years. Many 
approaches involve extracting information from the 
imagery through a variety of statistical filtering and 
sampling techniques, resulting in a reduced dimension 
feature vector that is the input for a learning algorithm. In 
this paper, we introduce the Support Vector Machine 
(SVM) algorithm, which is a wide margin classifier that 
can provide reasonable results for sparse data sets and 
whose training speed can be nearly independent of feature 
vector size. Therefore, we can avoid the feature 
extraction step and process the images directly. The SVM 
algorithm has the additional features that there are few 
parameters to adjust and the solutions are unique for a 
given training set. We applied SVM to vehicle 
classification and character recognition problems and 
compared the results to standard neural network 
approaches. It was found that the SVM algorithm gave 
equivalent or higher correct classification results 
compared to the neural networks. 

INTRODUCTION 

The problem that we address in this paper is 
image classification. Specifically, we consider algorithms 
that can take as input a digital image and classify it 
according to some criterion. Often this is a three-step 
process, consisting of pre-processing, feature extraction, 
and decision algorithm. The pre-processing is used to 
remove redundant information or to transform the image 
to a space where the objects are more easily classified. 
While we have used the multiresolution approach, 
implemented through the fast wavelet transform, in 
previous applications, " for this work we have performed 
little pre-processing. 

The feature extraction step is often employed to 
reduce the dimensionality of the problem. Examples of 
features include peaks in the Fourier spectrum, statistical 

measures of edge densities, multiresolution energies or a 
histogram of gray levels. In many cases, the type of 
problem dictates a certain choice for the feature vector. 
However, in image analysis, the correct features are not 
always well defined or easily extracted and much time 
and effort can be expended searching for an appropriate 
feature space. In the current application, we avoid feature 
extraction and work directly with the image. 

The final step in many systems is a decision 
module, which takes as input the lower dimension feature 
vector and outputs the classification. Often the decision 
algorithm contains a learning module where a sufficiently 
large number of sample images, with their associated 
classification, are presented to the algorithm. A variety of 
internal parameters are automatically adjusted in order to 
satisfy a minimum error criterion so as to achieve optimal 
classification results. The typical learning algorithm is a 
neural network (fuzzy logic systems generally have an 
embedded neural network for automated learning). The 
reason that feature vector selection is so important for 
neural networks (specifically Multi-Layer Perceptron 
neural networks) is that the complexity of the network 
scales with the size of the feature vector. In fact, the 
number of free parameters that must be determined is 
proportional to the size of the feature vector and is often 
many times larger. One would expect that a large number 
of training samples is required in order to constrain the 
error minimization sufficiently and provide good 
generalization. 

The Support Vector Machine (SVM) algorithm "5 

avoids many of these difficulties. Here, only the scalar 
product between feature vectors enters the problem. 
Therefore, the length of the feature vector has little effect 
on the computational complexity of the algorithm. By 
design, SVM is a wide margin classifier and can give 
reasonable results even for sparse training sets, where the 
number of samples may be less than the size of the feature 
vector. The algorithm also provides unique results for a 
given training set and can be made resistant to outliers by 
adjusting a cost parameter.   Previous results have shown 
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Fig. 1: Linearly separable data. 

that the SVM algorithm is comparable to the best neural 
networks.6 Since the algorithm is fairly new, the hope is 
that with further research it will, on average, surpass 
neural networks in ease of use and classification 
performance. A big advantage of the SVM algorithm is 
that it has few adjustable parameters that need to be 
tweaked in order to achieve good results. 

The paper begins by providing a brief tutorial on 
Support Vector Machines and outlining derivations of 
some of the important elements. A fast algorithm for 
SVM training is also introduced. The SVM algorithm is 
then applied to a collection of images of military vehicles 
and the resulting classification results are compared with 
a Multi-Layer Perceptron (MLP) neural network and with 
a Radial Basis Function (RBF) neural network. The fast 
algorithm is also compared with the MLP on a larger 
character recognition task. We conclude by summarizing 
our results and indicating the future direction of our 
research. 

SUPPORT VECTOR MACHINES 

To introduce the Support Vector Machine 
(SVM), we first consider a linearly separable problem; i.e. 
the data can be separated completely by a hyperplane. 
Figure 1 shows an example in two dimensions, where the 
hyperplane is a line. Each data point is described by a 
feature vector, x, and a truth value, y, that can take the 
values of +1 or -1, depending on the class. The two 
hyperplanes are required to pass through at least one point 
of each class and there can be no points between them. 
The boundary between the classes is then defined to be a 
third parallel hyperplane that is halfway between these 
two. The data points that the outer hyperplanes pass 
through, which are circled in Fig. 1, are called the support 
vectors, the meaning of which will be explained later. 
One of the hyperplanes consists of those points x which 
satisfy, 

wx+ 6=+\, (la) 

while the other hyperplane contains those points which 
obey, 

wx+b=-\, (lb) 

with Eq. (la) going through at least one point of class 
y=+\ and Eq. (lb) going through at least one point of 
class y=-\. The constants w and b define the 
hyperplanes, where w is a vector that is normal to the 
hyperplanes and -£/||H'|| is the perpendicular distance 
from the origin to the middle hyperplane. The RHS of 
Eq. (la) will be greater than or equal to +1 for all points 
of class y=+\ and the RHS of Eq. (lb) will be less than or 
equal to -1 for all points of class >,=-l. These can be 
combined into the following constraint on all the data 
points, 

y,[w-x, + /?)-\>0   (1 </<«). (2) 

The perpendicular distance between the two outer 
hyperplanes is equal to 2/1| it'll. Therefore, finding the 
hyperplanes with the largest margin reduces to computing 
values for w and b that minimize 
constraint in Eq. (2). 

| w\\ , subject to the 

Linearly separable data 

The SVM algorithm3'5 is based on finding the 
pair of parallel hyperplanes that separates the data into 
two classes and has the largest perpendicular distance 
between them. We conjecture that this will provide a 
good approximation to the "best" separating hyperplane, 
where by "best" we mean the hyperplane that will, on 
average, give the lowest classification error when new 
data is used. 

A standard procedure for handling optimization 
problems with constraints is given by the Lagrangian 
formalism.7"9 The constraints are taken into account by 
adding multiples of the constraint equations to the 
objective function, which in this case, results in the 
following primal Lagrangian, 3-5 

LF--\ w\ -Itaj>lw-x,+/>)+'Za„ (3) 
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where a,- are the Lagrange multipliers associated with 
each of the constraints in Eq. (2). Because the constraints 
are inequalities, bounded from below, the Lagrange 
multipliers are required to be non-negative. 7-9 

Setting the derivative of the Lagrangian in Eq. 
(3) with respect to w and b (the primal variables) equal to 
zero, leads to the following expressions, 

(4a) 

(4b) 

Inserting Eqs. (4a) and (4b) into (3), results in the dual 
Lagrangian, 

L
D -1a, ~ ~ X a/«/W> • *j • 

i *•    i   r 
(5) 

The problem is now reduced to finding the Lagrange 
multipliers (the dual variables) that maximize Eq. (5) and 
satisfy both the non-negativity constraints and the 
constraints of Eq. (4b). From the theory of constrained 
optimization ones finds that the only constraints that 
matter are those that actually constrain the minimization 
of the objective function. The other (inactive) constraints 
can be discarded without changing the optimal point. It is 
consistent therefore to set the Lagrange multipliers for the 
inactive constraints to zero. ' This condition can be 
summarized as: 

«,(#(*• x,+*)-l)-0, (6) 

which means that those data points with non-zero 
Lagrange multipliers (and hence are active constraints) 
will lie on the outer hyperplanes. These data points are 
called the support vectors and they are the points that 
determine the position of the hyperplanes. One can move 
the other points around the feature space or remove them 
entirely and the solution will not change, provided one 
does not move a point across one of the outer 
hyperplanes. 

One can solve Eq. (5) using any quadratic 
programming solver, although different solvers perform 
better on different types of problems.5,7' Solving the 
quadratic programming (QP) problem efficiently is 
actually one of the most difficult parts of SVM and there 
exists many numerical QP solvers that are readily 
available. 

Once the Lagrange multipliers are known, the 
solution for w is given by Eq. (4a), where the sum can be 
restricted to the support vectors, since they are the only 
ones with non-zero a. One can find b from Eq. (6) using 
any of the support vectors, although one generally 
averages over all the support vectors for better accuracy. 
Once these constants are known, the classification of an 
unknown vector, v, is given by the sign of, 

*+2«*W-5   (imnm), (7) 

where the sum is over the support vectors. 

Nonlinearty separable data 

Now suppose that the "best" boundary between 
the data is nonlinear. An example of this situation is 
shown in Fig. 2, using a non-homogeneous quadratic 
kernel. One cannot separate the two classes with a 
straight line. The structure of the SVM equations allows 
a simple solution to this situation. Map the data, through a 
nonlinear transformation <p to a different space where the 
data can be separated with a hyperplane. This results in 
the Lagrangian in Eq. (5) being transformed to,3"5 

(8) 

Since Eq. (8) depends only on scalar products between the 
transformed feature vectors, one can replace the scalar 
product with a kernel function, 

Fig. 2: Nonlinearly separable data. 
A-(I-,» = (7)(J-).0(», (9) 
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and  never need  to  compute  the transformation  <p 
explicitly. Equation (7) then becomes, 

i+I«#fe"v)   (!*/*«„,), (10) 

with the test feature vector now inside the summation 
over the support vectors. 

Since one is still solving the linear problem, just 
in a different space, the computational overhead is 
essentially the same. The solution and parameters for the 
hyperplane are in the higher dimensional space and when 
one transforms back to the original space the boundary 
becomes nonlinear. However, there is, in general, no way 
to analytically invert the solutions for w and b. Hence, 
one must use Eq. (10) to classify feature vectors. The 
advantage to using the kernel approach is that the higher 
dimensional (or embedding) space is essentially hidden 
from the user. One, in fact, never needs to know the 
function 0. It could even be of infinite dimension. 
Determining the best kernel for a given problem is a 
subject of active research. We have used a non- 
homogenous quadratic function in our numerical work: 

K(x,y) = (xy+\y. (11) 

Non-separable data 

A potential problem can occur when the data is 
not separable using a given kernel. This is demonstrated 
in Fig. 3, where, due to an outlier, the data cannot be 
separated with a linear kernel. Then the assumptions 
leading to Eq. (1) no longer hold. Although the preceding 

Fig. 3: Linearly non-separable data with 
C=<~. 

SVM algorithm can provide a reasonable solution in these 
cases, many times the separating hyperplane is not one 
that would be considered the "best" solution. This is due 
to the outliers being given more weight than the other data 
points. To avoid this, positive slack variables 8 are 
introduced that measure the deviation of the outliers from 
the optimal separating hyperplanes. The constraint 
equation (2) then becomes,3'5 

yjlw-x,* Sj -1+5,2:0. (12) 

A convenient way to minimize the total amount of the 
outlier error is to add an appropriate term to the 
Lagrangian multiplied by a constant C. Choosing the 
error term to be the sum of the deviations leads to the 
optimization solution being independent of the slack 
variables and their associated Lagrange multipliers. The 
only effect of this additional term is to restrict the original 
Lagrange multipliers to, 0<a,<C\ instead of being 
simply non-negative. Lower values for C correspond to 
smaller penalties for outliers and a softer margin. The 
threshold b can still be found from Eq. (6), provided the 
corresponding Lagrange multiplier is not at the upper 
bound C. 

Figures 3 and 4 illustrate the non-separable case, 
where the data points are the same as in Fig. 1, but with 
an outlier added. Figure 3 shows the results of using the 
standard form for computing the separating hyperplane 
(C=t») with a linear kernel. Notice the effect that the 
outlier had on the computed boundary and that nearly all 
the data points are support vectors. If we allow a softer 
margin and choose C=10, then Fig. 4 results, whose 
separating hyperplane is closer to that of Fig. 1.  In this 
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Fig. 4: Linearly non-separable data with 
C=10. 



case, the effect of the outlier has been minimized and 
there are fewer support vectors required to define the 
boundary. The kernel and the parameter C are the only 
items that the user needs to choose to run the SVM 
algorithm. 

Fast algorithm 

A problem with the baseline SVM algorithm can 
be seen by examining the objective function LD in Eq. (8). 
In order to solve the quadratic programming (QP) 
problem entailed in finding the Lagrange multipliers that 
maximize LD, one needs to compute the NxN Hessian 
matrix {HfyjyjKfxi^i), where N is the number of training 
vectors. This matrix can require a significant amount of 
memory when N gets large (some problems have N~105) 
and performing operations on such a large matrix can be 
problematic. 

Chunking10 was one of the first methods used to 
increase the size of the problem that can be solved 
reasonably with the SVM algorithm. One separates the 
support vectors from the non-support vectors through an 
iterative filtering process. One begins by optimizing a 
small subset of the input vectors. The remaining vectors 
are placed in a testing subset and compared against the 
optimal hyperplane. A portion of the test vectors that are 
misclassified are added to the training subset and those 
vectors in the original training subset that were not 
support vectors are removed and added to the test subset. 
The final step is an optimization using all the support 
vectors, where none of the test vectors are misclassified. 
However, when the number of support vectors also 
becomes large, then the chunking method will no longer 
be adequate. 

The next method discovered was to solve the QP 
problem in pieces, optimizing only a subset of the 
Lagrange multipliers in Eq. (8) at a time, keeping the 
others fixed. ' At each step, a set of multipliers are 
determined such that, if the optimal solution is computed, 
the resulting LD in Eq. (8) increases. One iterates until no 
feasible set exists, the objective function is maximum and 
the optimal solution is found. This method does not 
require the computation of the full Hessian matrix at any 
one time. 

When the subset size of the latter algorithm is 
chosen to be two, it was found512 that the optimization 
step could be performed analytically. This choice then 
removes the necessity of using numerical QP algorithms, 
which can be somewhat difficult to implement and use, 
and leads to a fast algorithm. At each step of this 
algorithm, a pair of Lagrange multipliers is optimized 

such that the objective function LD strictly increases. 
When no such pairs can be found the algorithm stops, 
having found the optimal solution. An advantage of the 
baseline algorithm is that the computation is independent 
of feature vector length. The Hessian matrix is computed 
once and then the optimization proceeds. This is not true 
for the fast implementation due to the multiple iterations. 
We have not tested the length dependence for the fast 
SVM. We implemented this algorithm in MATLAB0 and 
compared the results with the baseline SVM algorithm. 

RESULTS 

Algorithms 

To benchmark the classification performance of 
the SVM algorithm, we compared the results with the 
output of Multi-Layer Perceptron (MLP) and Radial Basis 
Function (RBF) neural networks from the MATLAB0 

Neural Network Toolbox.13 

The MLP neural network configuration that we 
chose was a two layer network with 100 neurons in the 
hidden layer and was trained by back-propagation. We 
used a hyperbolic-tangent sigmoid transfer function for 
both layers. The MLP neural network was trained using 
the RPROP algorithm,1314 which was found to yield 
orders of magnitude faster training than the standard 
gradient descent method with momentum and adaptive 
learning rate. We used the default values of 1.2 and 0.5 
for the RPROP increment and decrement parameters, 
respectively. The maximum weight change and initial 
value were set at 0.005 and the training error was chosen 
to be 1%, based on experiment to improve the 
classification. While there are a number of parameters to 
adjust in the RPROP-MLP neural network, the results are 
generally not very sensitive to the precise value of the 
parameters. We did notice an improvement of a few 
percent in the classification results when the maximum 
weight change was lowered from its default value of 50. 

The RBF neural network, as implemented in 
MATLAB0, adds one neuron at a time to the network 
until the error goal is reached. The centers for the radial 
basis functions are selected from the training vectors and 
the width is chosen manually. During each iteration, the 
algorithm chooses the weights of the new neuron to be the 
feature vector that will result in the greatest decrease in 
total error. This leads to the smallest number of neurons, 
but takes a long time to train. We chose the width of the 
radial basis functions to be 25 and the training error to be 
1%, both based on experiment to optimize the results. 
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Fig. 5: Samples of vehicle imagery, original and reduced resolution. 

The baseline and fast SVM algorithms were also 
implemented in MATLABC. The former was developed 
by modifying and correcting an existing SVM toolbox15 

and the latter was coded directly from Refs. [5,12]. For 
both algorithms we chose to use a non-homogenous 
quadratic polynomial kernel and we set the non-separable 
parameter C to infinity for the baseline SVM and to 10 for 
the fast algorithm. Since the fast algorithm iterates over 
the Lagrange multipliers, it becomes quite slow when 
large values of C are used with non-separable data. The 
choice of C in this case was not critical due to the sparsity 
of the data. Since SVM is a binary classifier, it is 
necessary to train separate classifiers for each of the 5 
vehicles. A test vector is then analyzed by each of the 
classifiers and the class with the largest output is chosen. 
The multi-class implementation of the SVM algorithm is 
a topic of active research.5 

Military vehicle test 

The first data set that we used to test the SVM 
algorithm consisted of images of military vehicles. We 
created 512x640 RGB digital images of five different 
vehicles (1 HMMWV and 4 trucks), taken from a variety 
of positions about the front of the vehicles with a digital 
camera. Since we wanted the algorithms to classify the 
vehicles based on their rough shapes, we converted the 
images to grayscale and reduced the resolution by a factor 
of 32 to 16x20. Examples of the imagery, before and 
after the resolution reduction, are shown in Fig. 5 and 
have been resized for display purposes. The imagery was 

then converted column-wise to a vector. We normalized 
the resulting feature vectors to zero mean and unit 
standard deviation in order to remove, as much as 
possible, any extraneous features of the image classes. 
Since we had a limited number of images (50) for each 
vehicle, we resorted to a jackknife approach to training. 
We randomly chose A' out of 50 images to train with and 
then tested with the remainder (except for the case when 
N=49, where we tested on each of the 50 images). We 
averaged over 50 iterations to obtain our results with each 
classifier being presented the same training and testing 
data. 

10        20        30        40        50 
Training samples per class 

Fig.  6:  Error rate  vs.  number of training 
samples (D=MLP, 0=RBF, *=SVM). 
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parameters for this particular data set for each of the 
algorithms. Individual classification rates for the SVM 
algorithm is shown in Tables I for the case where 49 out 
of 50 feature vectors was used for training. The columns 
label the correct vehicle and the rows label the predicted 
vehicle. The HMMWV is vehicle 1 and the trucks are 
vehicles 2-5. 

This turned out to be a relatively easy problem 
with fewer training examples than feature vector 
elements. The classification rates and training times for 
the two neural network configurations was somewhat of a 
surprise, since we did not expect them to perform well, 
due to the large feature vector size. A more complex and 
robust target data set is needed to fully differentiate 
between the three learning algorithms. An important 
addition to our future data collection will be different 
vehicles of the same class in order to measure inter-class 
variability. 

Character recognition test 

The classification error rates for the three 
algorithms are displayed in Fig. 6 as a function of N, the 
number of training samples in each class. The plots are 
offset slightly for display clarity. The SVM error rates 
are slightly better (-1%) than the RBF results for the 
sparser training sets (N<40). The MLP error rates were 
significantly higher than the other two classifiers. We do 
not separate the baseline and fast SVM algorithm results 
since they find identical optimal solutions. 

Vehicle 1 2 3 4 5 
1 0.96 0.00 0.02 0.00 0.00 
2 0.00 1.00 0.00 0.00 0.00 
3 0.04 0.00 0.96 0.00 0.00 
4 0.00 0.00 0.00 1.00 0.02 
5 0.00 0.00 0.02 0.00 0.98 

Table I: SVM classification results (N=49). 

Figure 7 shows the training time as a function of 
N. The RPROP-MLP network trains substantially faster 
than the baseline SVM algorithm, which in turn is faster 
than the RBF network. However, the fast SVM algorithm 
is only slightly slower than the MLP network, while 
providing significantly better classification results. Small 
differences in training times should not be considered too 
seriously since there are many factors that affect 
computation time and there are many different approaches 
to MLP and RBF training. We have chosen one particular 
implementation and one particular set of parameters to 
test our algorithms, although we have sought for the best 

Due to the limited size of the previous database, 
we wanted to test our implementation of the algorithms 
against a larger set of data. Our second data set was taken 
from a MNIST database6 of handwritten digits, 0-9, which 
consists of a 60,000 image training set and a 10,000 
image testing set. The database mixes two separate 
databases from NIST, one using Census Bureau 
employees and the other using high school students. 
There are approximately 250 different writers in the 
training set, who are different from the writers in the 
testing set. Samples of the images are shown in Fig. 8. 
Other   classification   tests   on   this   data   set   have 

06 0 00O0O0 6 
/ \   \   I / 4 / / / 1 
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7 ?^117 717 1 
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Fig. 8: Samples of MNIST digits. 
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Digit 0 1 2 3 4 5 6 7 8 9 
0 97.9 0.0 0.5 0.1 0.2 0.8 0.6 0.0 0.3 0.5 

1 0.0 98.9 0.3 0.0 0.1 0.0 0.2 1.6 0.2 0.5 
2 0.2 0.3 95.3 0.9 0.0 0.1 0.1 1.2 0.1 0.2 
3 0.1 0.1 0.9 95.5 0.0 1.6 0.0 0.2 1.3 0.7 
4 0.0 0.0 0.4 0.0 96.2 0.2 0.9 0.4 0.4 1.3 
5 0.3 0.1 0.0 0.9 0.0 95.1 0.8 0.1 0.1 0.2 
6 0.6 0.3 0.5 0.0 0.8 0.9 96.3 0.0 0.6 0.3 
7 0.1 0.1 1.0 0.8 0.1 0.1 0.1 94.7 0.3 1.2 
8 0.6 0.3 0.9 1.3 0.2 0.7 0.8 0.2 95.3 0.4 
9 0.2 0.0 0.3 0.5 2.3 0.6 0.0 1.7 0.5 94.7 

Table 11: SVM classification table for the MNIST 
data. 

demonstrated the superiority of the SVM algorithm over 
the MLP and RBF networks.6 

The relatively slow training speed of the RBF 
and baseline SVM algorithms for large training sets led us 
to apply only the MLP and fast SVM algorithms to this 
data. For these cases, we simply input the entire (28x28) 
image into the algorithms as a feature vector. We trained 
the MLP network in two different ways, one being a 
straight 10-class implementation and the other being 10 
binary classifiers, similar to the SVM setup. In the latter 
case, we included more samples of the target class in each 
training set than would normally occur. We found that 
this increases the classification performance. 

The results of using 3,000 training vectors is 
shown in Table II for the fast SVM algorithm, which 
resulted in a total classification rate of 96.0% and a 
training time of 19.3 hours. Again, the rows label the 
predicted character and the columns label the correct 
character. The results for the two MLP networks were 
92.0% classification rate in 0.6 hours for the 10-class 
implementation and 92.0% classification in 7.8 hours for 
the binary classifier. Based on previous tests, we 
expected the MLP binary classifier to outperform the 10- 
class algorithm. The fact that they achieved identical 
classification rates is somewhat of a surprise. As 
expected, the SVM classifier performed better than the 
MLP, although taking longer to train. We expect that 
SVM would still give better classification rates even for 
equal training times. Future test will examine this issue, 
especially in light of the training times and performance 
of the 10-class MLP network. The main point of this test 
was to show that, given sufficient training time, very large 
classification problems can be handled by the fast SVM 
algorithm, while retaining excellent classification results. 
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CONCLUSION 

In summary, we have applied a relatively new 
learning algorithm, the Support Vector Machine (SVM), 
to a military vehicle classification problem and to a larger 
character recognition problem. Results were compared to 
standard neural network approaches. We demonstrated 
good classification results on the data set of military 
vehicle imagery for all the classifiers. The SVM 
algorithm performed slightly better than the Radial Basis 
Function (RBF) neural network, primarily on the sparser 
training sets. Both achieved significantly lower 
classification error rates than the Multi-Layer Perceptron 
(MLP) neural network. The fast implementation of SVM 
was much faster than the RBF network and only slightly 
slower than the MLP network, while still retaining the 
same classification performance of the baseline algorithm. 
If one were to compare classification rate as a function of 
training time, it would be seen that the fast SVM 
algorithm still performs significantly better than the MLP 
network for a given amount of training time. 

The tests using the larger character recognition 
data set showed that the fast SVM algorithm could 
achieve better classification results with more than twice 
the training time as the MLP network. We expect that if 
data is taken for classification rate as a function of 
training time, the SVM algorithm will continue to 
outperform the MLP. The RBF network was not tested 
due to the extremely long training times that would be 
required. It has also been demonstrated that the fast SVM 
algorithm is capable of working with large training sets. 

The advantages of the fast SVM implementation 
are that the solutions are unique, there are few parameters 
to adjust, it is outlier resistant, and it is a wide margin 
classifier, which gives good results even for sparse data 
sets. The baseline SVM algorithm has the further 
advantage that the training speed is independent of the 
feature vector length. We have not investigated the length 
dependence of the fast algorithm, which may in fact be 
only slightly higher than in the baseline algorithm. One 
disadvantage of SVM is that the testing phase can be slow 
if there are a large number of support vectors. The 
discovery of the reduced set method.516 where a large 
number of support vectors are replaced by an effective 
vector, has already provided a substantial increase in the 
speed of the SVM test phase. 

Future work consists of implementing 
improvements to the training and testing speeds, 
investigating methods to find the optimum kernel, and 
determining the usefulness of preprocessing the data. In 
particular, we are implementing a variant of the fast 



algorithm that optimizes three multipliers simultaneously. 
We are also compiling larger and more complex data sets 
with which to test future implementations. 
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